Altenkirch T, Grattage J (2005) A functional quantum programming language. In: Proceedings of the 20th IEEE symposium on logic in computer science (LICS), pp 249–258
Ambainis A, Bach E, Nayak A, Vishwanath A, Watrous J (2001) One-dimensional quantum walks. In: Proceedings of the 33rd ACM symposium on theory of computing (STOC), pp 37–49
Apt, K.R., de Boer, F.S., Olderog, E.-R.: Verification of sequential and concurrent programs. Springer, London (2009)
Book
MATH
Google Scholar
Ardeshir-Larijani E, Gay SJ, Nagarajan R (2014) Verification of concurrent quantum protocols by equivalence checking. In: Proceedings of the 20th international conference on tools and algorithms for the construction and analysis of systems (TACAS), pp 500–514
Baltag, A., Smets, S.: LQP: the dynamic logic of quantum information. Math Struct Comput Sci 16, 491–525 (2006)
MathSciNet
Article
MATH
Google Scholar
Barthe G, Fournet C, Grégoire B, Strub P-Y, Swamy N, Zanella Béguelin S (2014) Probabilistic relational verification for cryptographic implementations. In: Proceedings of the 41st annual ACM symposium on principles of programming languages (POPL), pp 193–206
Barthe G, Köpf B, Olmedo F, Zanella Béguelin Z (2013) Probabilistic relational reasoning for differential privacy. In: ACM transactions on programming languages and systems, vol 35, No. 9
Brunet, O., Jorrand, P.: Dynamic quantum logic for quantum programs. Int J Quantum Inf 2, 45–54 (2004)
Article
MATH
Google Scholar
Chadha, R., Mateus, P., Sernadas, A.: Reasoning about imperative quantum programs. Electron Notes Theor Comput Sci 158, 19–39 (2006)
Article
MATH
Google Scholar
Chakarov A, Sankaranarayanan S (2013) Probabilistic program analysis with martingales. In: Proceedings of the 25th international conference on computer aided verification (CAV). Springer LNCS 8044, pp 511–526
Chatterjee K, Fu HF, Novotný P, Hasheminezhad R (2016) Algorithmic analysis of qualitative and quantitative termination problems for affine probabilistic programs. In: Proceedings of the 43rd annual ACM symposium on principles of programming languages (POPL), pp 327–342
Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Phys Rev A 56, 1201–1204 (1997)
Article
Google Scholar
Colón MA, Sankaranarayanan S, Sipma HB (2003) Linear invariant generation using non-linear constraint solving. In: Proceedings of the 15th international conference on computer aided verification (CAV). Springer LNCS, pp 420–433
Dale, H., Jennings, D., Rudolph, T.: Provable quantum advantage in randomness processing. Nat Commun 6, 8203 (2015)
Article
Google Scholar
D'Hondt, E., Panangaden, P.: Quantum weakest preconditions. Math Struct Comput Sci 16, 429–451 (2006)
MathSciNet
Article
MATH
Google Scholar
Feng, Y., Duan, R.Y., Ji, Z.F., Ying, M.S.: Proof rules for the correctness of quantum programs. Theor Comput Sci 386, 151–166 (2007)
MathSciNet
Article
MATH
Google Scholar
Feng Y, Hahn EM, Turrini A, Zhang LJ (2015) QPMC: a model checker for quantum programs and protocols. In: Proceedings of the 20th international symposium on formal methods (FM). Springer LNCS 9109, pp 265–272
Feng Y, Ying MS (2015) Toward automatic verification of quantum cryptographic protocols. In: Proceedings of the 26th international conference on concurrency theory (CONCUR), pp 441–455
Feng, Y., Yu, N.K., Ying, M.S.: Model checking quantum Markov chains. J Comput Syst Sci 79, 1181–1198 (2013)
MathSciNet
Article
MATH
Google Scholar
Fioriti LMF, Hermanns H (2015) Probabilistic termination: soundness, completeness, and compositionality. In: Proceedings of the 42nd annual ACM symposium on principles of programming languages (POPL), pp 489–501
Gay SJ, Papanikolaou N, Nagarajan R (2008) QMC: a model checker for quantum systems. In: Proceedings of the 20th international conference on computer aided verification (CAV). Springer LNCS 5123, pp 543–547
Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J Math Mech 6, 885–893 (1957)
MathSciNet
MATH
Google Scholar
Gorelick GA (1975) A complete axiomatic system for proving assertions about recursive and non-recursive programs. Technical Report, Department of Computer Science, University of Toronto
Green A, Lumsdaine PL, Ross NJ, Selinger P, Valiron B (2013) Quipper: a scalable quantum programming language. In: Proceedings of the 34th ACM conference on programming language design and implementation (PLDI), pp 333–342
Grover LK (1997) Quantum telecomputation. arXiv:quant-ph/9704012
Harel D (1979) First-order dynamic logic, LNCS 68. Springer
Den Hartog, J., de Vink, E.P.: Verifying probabilistic programs using a Hoare like logic. Int J Found Comput Sci 13, 315–340 (2002)
MathSciNet
Article
MATH
Google Scholar
Leymann, T.: Hoare logic and auxiliary variables. Formal Asp Comput 11, 541–566 (1999)
Article
MATH
Google Scholar
Katoen J-P, McIver A, Meinicke L, Morgan CC (2010) Linear-invariant generation for probabilistic programs—automated support for proof-based methods. In: Proceedings 17th international symposium on static analysis (SAS). Springer LNCS 6337, pp 390–406
Kubota, T., Kakutani, Y., Kato, G., Kawano, Y., Sakurada, H.: Semi-automated verification of security proofs of quantum cryptographic protocols. J Symb Comput 73, 192–220 (2016)
MathSciNet
Article
MATH
Google Scholar
JavadiAbhari, A., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T., Martonosi, M.: ScaffCC: scalable compilation and analysis of quantum programs. Parallel Comput 45, 2–17 (2015)
Article
Google Scholar
Kakutani Y (2009) A logic for formal verification of quantum programs. In: Proceedings of the 13th Asian computing science conference (ASIAN 2009). Springer LNCS 5913, pp 79–93
Li YJ, Ying MS (2018) Algorithmic analysis of termination problems for quantum programs. In: Proceedings of the 45th annual ACM symposium on principles of programming languages (POPL), pp 35.1–35.29
Li, Y.J., Yu, N.K., Ying, M.S.: Termination of nondeterministic quantum programs. Acta Inf 51, 1–24 (2014)
MathSciNet
Article
MATH
Google Scholar
Liu T, Li YJ, Wang SL, et al A theorem prover for quantum Hoare logic and its applications. arXiv:1601.03835
Mateus, P., Sernadas, A.: Weakly complete axiomatization of exogenous quantum propositional logic. Inf Comput 204, 771–794 (2006)
MathSciNet
Article
MATH
Google Scholar
van Meter R, Munro WJ, Nemoto K, Itoh KM (2008) Arithmetic on a distributed-memory quantum multicomputer. ACM J Emerg Technol Comput Syst 3, Art. No. 17
McIver, A., Morgan, C.: Abstraction, refinement and proof for probabilistic systems. Springer, Berlin (2005)
MATH
Google Scholar
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)
MATH
Google Scholar
Paykin J, Rand R, Zdancewic S (2017) QWIRE: a core language for quantum circuits. In: Proceedings of the 44th annual ACM symposium on principles of programming languages (POPL), pp 846–858
Rand R Verification logics for quantum programs. http://www.cis.upenn.edu/~rrand/wpe.pdf
Sankaranarayanan S, Sipma HB, Manna Z (2004) Non-linear loop invariant generation using Gröbner bases. In: Proceedings of the 31st ACM symposium on principles of programming languages (POPL), pp 318–329
Selinger, P.: Towards a quantum programming language. Math Struct Comput Sci 14, 527–586 (2004)
MathSciNet
Article
MATH
Google Scholar
Serafini A, Mancinians S, Bose S (2006) Distributed quantum computation via optical fibers. Phys Rev Lett 96, Art. No. 010503
Svore K, Geller A, Troyer M, Azariah J, Granade C, Heim B, Kliuchnikov V, Mykhailova M, Paz A, Roetteler M (2018) Q#: enabling scalable quantum computing and development with a high-level DSL. In: Proceedings of the real world domain specific languages workshop 2018, Art. no. 8
Tani S, Kobayashi H, Matsumoto K (2012) Exact quantum algorithms for the leader election problem. ACM Trans Comput Theory 4, Art. No. 1
Temme, K., Osborne, T.J., Vollbrecht, K.G., Poulin, D., Verstraete, F.: Quantum metropolis sampling. Nature 471, 87–90 (2011)
Article
Google Scholar
Unruh D Quantum relational Hoare logic. https://arxiv.org/pdf/1802.03188.pdf
Wecker D, Svore KM (2014) LIQUi|>: a software design architecture and domain-specific language for quantum computing. arXiv:1402.4467
Ying MS (2011) Floyd-Hoare logic for quantum programs. ACM Trans Program Lang Syst 39, Art. no. 19
Ying MS (2016) Foundations of quantum programs. Morgan-Kaufmann
Ying MS (2016) Toward automatic verification of quantum programs (extended abstract). In: Proceedings of the 2nd international symposium on dependable software engineering: theories, tools, and applications (SETTA)
Ying, M.S., Chen, J.X., Feng, Y., Duan, R.Y.: Commutativity of quantum weakest preconditions. Inf Process Lett 104, 152–158 (2007)
MathSciNet
Article
MATH
Google Scholar
Ying, M.S., Feng, Y.: Quantum loop programs. Acta Inf 47, 221–250 (2010)
Google Scholar
Ying, M.S., Feng, Y.: A flow-chart language for quantum programming. IEEE Trans Softw Eng 37, 466–485 (2011)
Article
Google Scholar
Ying MS, Li YJ, Yu NK, Feng Y (2014) Model-checking linear-time properties of quantum systems. ACM Trans Comput Logic 15, Art. no. 22
Ying MS, Ying SG, Wu XD (2017) Invariants of quantum programs: characterisations and generation. In: Proceedings of the 44th annual ACM symposium on principles of programming languages (POPL), pp 818–832
Ying, M.S., Yu, N.K., Feng, Y., Duan, R.Y.: Verification of quantum programs. Sci Comput Program 78, 1679–1700 (2013)
Article
Google Scholar
Ying SG, Feng Y, Yu NK, Ying MS (2013) Reachability analysis of quantum Markov chains. In: Proceedings of the 24th Int Conf Concurr Theory (CONCUR), pp 334–348
Yu NK, Ying MS (2012) Reachability and termination analysis of concurrent quantum programs. In: Proceedings of the 23th international conference on concurrency theory (CONCUR), pp 69–83