Parameterized verification of monotone information systems

Abstract

In this paper, we study the information system verification problem as a parameterized verification one. Informations systems are modeled as multi-parameterized systems in a formal language based on the Algebraic State-Transition Diagrams (ASTD) notation. Then, we use the Well Structured Transition Systems (WSTS) theory to solve the coverability problem for an unbounded ASTD state space. Moreover, we define a new framework to prove the effective pred-basis condition of WSTSs, i.e. the computability of a base of predecessors for every states.

This is a preview of subscription content, access via your institution.

References

  1. ACJT96

    Abdulla PA, Cerans K, Jonsson B, Tsay YK (1996) General decidability theorems for infinite-state systems. In: Logic in computer science. IEEE, pp 313–321

  2. AHH13

    Abdulla PA, Haziza F, Holík L (2013) All for the price of few. In: Verification, model checking, and abstract interpretation, volume 7737 of LNCS. Springer, pp 476–495

  3. BB87

    Bolognesi T, Brinksma E (1987) Introduction to the ISO specification language LOTOS. Comput Netw ISDN Syst 14(1): 25–59

    Article  Google Scholar 

  4. BH05

    Bingham JD, Hu AJ (2005) Empirically efficient verification for a class of infinite-state systems. In: Tools and algorithms for the construction and analysis of systems, volume 3440 of LNCS. Springer, pp 77–92

  5. BK84

    Bergstra JA, Klop JW (1984) Process algebra for synchronous communication. Inf Control 60(1): 109–137

    MathSciNet  Article  MATH  Google Scholar 

  6. BSM99

    Bernus, P, Schmidt, G, Mertins, K (eds) (1999) Handbook on architectures of information systems. Springer, Berlin

    Google Scholar 

  7. CTV06

    Clarke E, Talupur M, Veith H (2006) Environment abstraction for parameterized verification. In: Verification, model checking, and abstract interpretation, volume 3855 of LNCS. Springer, pp 126–141

  8. CYF17

    Chane-Yack-Fa R (2017) Verification of parameterized algebraic state transition diagrams. Technical report, Département d’informatique, Faculté des Sciences, Université de Sherbrooke. http://info.usherbrooke.ca/mfrappier/Papers/pastd.pdf

  9. DFS98

    Dufourd C, Finkel A, Schnoebelen P (1998) Reset nets between decidability and undecidability. In: Automata, languages and programming, volume 1443 of LNCS. Springer, pp 103–115

  10. Din92

    Ding G (1992) Subgraphs and well-quasi-ordering. J Graph Theory 16(5): 489–502

    MathSciNet  Article  MATH  Google Scholar 

  11. DSZ10

    Delzanno G, Sangnier A, Zavattaro G (2010) Parameterized verification of ad hoc networks. In: Concurrency theory, volume 6269 of LNCS. Springer, pp 313–327

  12. EJFG+10

    Embe-Jiague M, Frappier M, Gervais F, Konopacki P, Laleau R, Milhau J, St-Denis R (2010) Model-driven engineering of functional security policies. In: International conference on enterprise information systems. SciTePress, pp 374–379

  13. EK00

    Emerson EA, Kahlon V (2000) Reducing model checking of the many to the few. In: Automated deduction, volume 1831 of LNCS. Springer, pp 236–254

  14. ES96

    Emerson EA, Sistla AP (1996) Symmetry and model checking. Form Methods Syst Des 9(1–2): 105–131

    Article  Google Scholar 

  15. FFC+10

    Frappier M, Fraikin B, Chossart R, Chane-Yack-Fa R, Ouenzar M (2010) Comparison of model checking tools for information systems. In: Formal Methods and software engineering, volume 6447 of LNCS. Springer, pp 581–596

  16. FGL+08

    Frappier M, Gervais F, Laleau R, Fraikin B, St-Denis R (2008) Extending statecharts with process algebra operators. Innov Syst Softw Eng 4(3): 285–292

    Article  Google Scholar 

  17. FGLF08

    Frappier M, Gervais F, Laleau R, Fraikin B (2008) Algebraic state transition diagrams. Technical report, Université de Sherbrooke. http://info.usherbrooke.ca/mfrappier/Papers/astd.pdf

  18. Fin87

    Finkel A (1987) A generalization of the procedure of karp and miller to well structured transition systems. In: Automata, languages and programming, volume 267 of LNCS. Springer, pp 499–508

  19. Fin94

    Finkel A (1994) Decidability of the termination problem for completely specified protocols. Distrib Comput 7(3): 129–135

    Article  Google Scholar 

  20. FS01

    Finkel Alain, Schnoebelen Philippe (2001) Well-structured transition systems everywhere!. Theoretical Computer Science 256(1): 63–92

    MathSciNet  Article  MATH  Google Scholar 

  21. FSD03

    Frappier M, St-Denis R (2003) EB 3: an entity-based black-box specification method for information systems. Softw Syst Model 2(2): 134–149

    Article  Google Scholar 

  22. Har87

    Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program 8(3): 231–274

    MathSciNet  Article  MATH  Google Scholar 

  23. Hig52

    Higman G (1952) Ordering by divisibility in abstract algebras. In: Proceedings of the London Mathematical Society, vol s3-2, pp 326–336

  24. Hoa78

    Hoare CAR (1978) Communicating sequential processes. Commun ACM 21(8): 666–677

    Article  MATH  Google Scholar 

  25. HP79

    Hopcroft J, Pansiot J-J (1979) On the reachability problem for 5-dimensional vector addition systems. Theor Comput Sci 8(2): 135–159

    MathSciNet  Article  MATH  Google Scholar 

  26. HSBR10

    Hanna Y, Samuelson D, Basu S, Rajan H (2010) Automating cut-off for multi-parameterized systems. In: Formal methods and software engineering, volume 6447 of LNCS. Springer, pp 338–354

  27. KKW10

    Kaiser A, Kroening D, Wahl T (2010) Dynamic cutoff detection in parameterized concurrent programs. In: Computer aided verification, volume 6174 of LNCS. Springer, pp 645–659

  28. Kru60

    Kruskal JB (1960) Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Trans Am Math Soc 95: 210–225

    MathSciNet  MATH  Google Scholar 

  29. KS14

    König B, Stückrath J (2014) A general framework for well-structured graph transformation systems. In: Concurrency theory, volume 8704 of LNCS. Springer, pp 467–481

  30. McM99

    McMillan KL (1999) Verification of infinite state systems by compositional model checking. In: Correct hardware design and verification methods, volume 1703 of LNCS. Springer, pp 219–234

  31. Mey09

    Meyer R (2009) Structural Stationarity in the π-Calculus. Ph.D. thesis, Department für Informatik, Carl von Ossietzky Universität, Oldenburg

  32. Mil89

    Milner R (1989) Communication and concurrency. Prentice Hall, Upper Saddle River

    Google Scholar 

  33. Pet81

    Peterson JL (1981) Petri net theory and the modeling of systems. Prentice Hall, Upper Saddle River

    Google Scholar 

  34. RHB97

    Roscoe AW, Hoare CAR, Bird R (1997) The theory and practice of concurrency. Prentice Hall, Upper Saddle River

    Google Scholar 

  35. RS10

    Robertson N, Seymour PD (2010) Graph minors XXIII. Nash-Williams’ immersion conjecture. J Comb Theory 100(2): 181–205

    MathSciNet  Article  MATH  Google Scholar 

  36. SK09a

    Siirtola A, Kortelainen J (2009) Algorithmic verification with multiple and nested parameters. In: Formal methods and software engineering, volume 5885 of LNCS. Springer, pp 561–580

  37. SK09b

    Siirtola A, Kortelainen J (2009) Parameterised process algebraic verification by precongruence reduction. In: Application of concurrency to system design. IEEE, pp 158–167

  38. SS12

    Schmitz S, Schnoebelen P (2012) Algorithmic aspects of wqo theory. Lecture Notes

  39. VLDM16

    Vekris D, Lang F, Dima C, Mateescu R (2016) Verification of eb3 specifications using CADP. Formal Asp Comput 28(1): 145–178

    MathSciNet  Article  MATH  Google Scholar 

Download references

Funding

Funding was provided by Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN-2014-04162).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marc Frappier.

Additional information

Michael Butler

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chane-Yack-Fa, R., Frappier, M., Mammar, A. et al. Parameterized verification of monotone information systems. Form Asp Comp 30, 463–489 (2018). https://doi.org/10.1007/s00165-018-0460-8

Download citation

Keywords

  • Model checking
  • Parameterized verification
  • Process algebra
  • Well-structured transition systems
  • Well-quasi-ordering
  • Coverability
  • Information systems