Formal Aspects of Computing

, Volume 28, Issue 5, pp 881–907 | Cite as

On the formal analysis of Gaussian optical systems in HOL

  • Umair Siddique
  • Sofiène Tahar
Original Article


Optics technology is being increasingly used in mainstream industrial and research domains such as terrestrial telescopes, biomedical imaging and optical communication. One of the most widely used modeling approaches for such systems is Gaussian optics, which describes light as a beam. In this paper, we propose to use higher-order-logic theorem proving for the analysis of Gaussian optical systems. In particular, we present the formalization of Gaussian beams and verify the corresponding properties such as beam transformation, beam waist radius and location. Consequently, we build formal reasoning support for the analysis of quasi-optical systems. In order to demonstrate the effectiveness of our approach, we present a case study about the receiver module of a real-world Atacama Pathfinder Experiment (APEX) telescope.


Geometrical optics Gaussian beams Quasi-optical systems Theorem proving HOL light 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AD04.
    Avigad J, Donnelly K (2004) Formalizing O notation in Isabelle/HOL. In: Automated reasoning, Lecture Notes in Computer Science, vol 3097. Springer, Berlin, Heidelberg, pp 357–371Google Scholar
  2. APE15.
    Atacama Pathfinder EXperiment (APEX) (2015)
  3. ASM+14.
    Afshar SK, Siddique U, Mahmoud MY, Aravantinos V, Seddiki O, Hasan O, Tahar S (2014) Formal analysis of optical systems. Math Comput Sci 8(1): 39–70MathSciNetCrossRefzbMATHGoogle Scholar
  4. CSBE10.
    Chabory A, Sokoloff J, Bolioli S, Elis K (2010) Application of gaussian beam based techniques to the quasi-optical systems of radiofrequency radiometers. In: European Conference on Antennas and Propagation, vol 2010, pp 12–16Google Scholar
  5. Dam05.
    Damask JN (2005) Polarization optics in telecommunications. Springer Series in Optical Sciences. SpringerGoogle Scholar
  6. FAGP13.
    Franke-Arnold S, Gay SJ, Puthoor IV (2013) Quantum process calculus for linear optical quantum computing. In: Reversible Computation, Lecture Notes in Computer Science, vol 7948. Springer, pp 234–246Google Scholar
  7. Fle01.
    Fleuriot JD (2001) Nonstandard geometric proofs. In: Automated deduction in geometry, Lecture Notes in Computer Science, vol 2061. Springer, pp 246–267Google Scholar
  8. Gol98.
    Goldsmith PF (1998) Quasioptical systems: gaussian beam quasioptical propogation and applications. IEEE Press Series on RF and Microwave Technology. WileyGoogle Scholar
  9. Gri05.
    Griffiths DJ (2005) Introduction to quantum mechanics. Pearson Prentice HallGoogle Scholar
  10. Har09a.
    Harrison J (2009) Handbook of practical logic and automated reasoning. Cambridge University PressGoogle Scholar
  11. Har09b.
    Harrison J (2009) HOL light: an overview. In: Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science, vol 5674. Springer, pages 60–66Google Scholar
  12. Har13.
    Harrison J (2013) The light theory of Euclidean space. J Autom Reason. 50(2): 173–190MathSciNetCrossRefzbMATHGoogle Scholar
  13. HW05a.
    Hodgson N, Weber H (2005) Optical resonators: fundamentals, advanced concepts, applications. Springer Series in Optical Sciences. SpringerGoogle Scholar
  14. HW05b.
    Hodgson N, Weber H (2005) Optical resonators: fundamentals, advanced concepts, applications. SpringerGoogle Scholar
  15. KAHT14.
    Khan-Afshar S, Hasan O, Tahar S (2014) Formal analysis of electromagnetic optics. In: Novel optical systems design and optimization, SPIE, vol 9193, pp 91930A–91930A–14Google Scholar
  16. KL66.
    Kogelnik H, Li T (1966) Laser beams and resonators. Appl Opt. 5(10): 1550–1567CrossRefGoogle Scholar
  17. KU14.
    Kaliszyk C, Urban J (2014) Learning-assisted automated reasoning with flyspeck. J Autom Reason. 53(2): 173–213MathSciNetCrossRefzbMATHGoogle Scholar
  18. KUS+15.
    Kaliszyk C, Urban J, Siddique U, Khan-Afshar S, Dunchev C, Tahar S (2015) Formalizing physics: automation, presentation and foundation issues. In: Intelligent computer mathematics, Lecture Notes in Computer Science, vol 9150. Springer, pp 288–295Google Scholar
  19. LAS15.
  20. Moo01.
    Mookherjea S (2001) Analysis of optical pulse propagation with two-by-two (ABCD) matrices. Phys Rev E. 64(016611): 1–10Google Scholar
  21. MPM+11.
    Malak M, Pavy N, Marty F, Peter Y, Liu AQ, Bourouina T (2011) Stable, high-Q fabry-perot resonators with long cavity based on curved, all-silicon, high reflectance mirrors. In: IEEE international conference on micro electro mechanical systems, pp 720–723Google Scholar
  22. MT14.
    Mahmoud MY, Tahar S (2014) On the quantum formalization of coherent light in HOL. In: NASA formal methods, LNCS, vol 8430. Springer, pp 128–142Google Scholar
  23. NKST98.
    Nakazawa M, Kubota H, Sahara A, Tamura K (1998) Time-domain ABCD Matrix Formalism for Laser Mode-Locking and Optical Pulse Transmission. IEEE J Quantum Electron 34(7): 1075–1081CrossRefGoogle Scholar
  24. NLD+09.
    Nystrm O, Lapkin I, Desmaris V, Dochev D, Ferm S-E, Fredrixon M, Henke D, Meledin D, Monje R, Strandberg M, Sundin E, Vassilev V, Belitsky V (2009) Optics design and verification for the APEX Swedish heterodyne facility instrument (SHeFI). J Infrared Millim Terahertz Waves. 30(7): 746–761CrossRefGoogle Scholar
  25. Opt15.
  26. reZ15.
  27. SAT13a.
    Siddique U, Aravantinos V, Tahar S (2013) Formal stability analysis of optical resonators. In: NASA formal methods, Lecture Notes in Computer Science, vol 7871, pp 368–382Google Scholar
  28. SAT13b.
    Siddique U, Aravantinos V, Tahar S (2013) On the formal analysis of geometrical optics in HOL. In: Automated deduction in geometry, Lecture Notes in Computer Science, vol 7993, pp 161–180Google Scholar
  29. Sid15.
    Siddique U (2015) Formal analysis of gaussian optical systems: source code.
  30. ST07.
    Saleh BEA, Teich MC (2007) Fundamentals of photonics. WileyGoogle Scholar
  31. SXS+11.
    Su B, Xue J, Sun L, Zhao H, Pei X (2011) Generalised ABCD matrix treatment for laser resonators and beam propagation. Opt Laser Technol 43(7): 1318–1320CrossRefGoogle Scholar
  32. SZL+06.
    Song WZ, Zhang XM, Liu AQ, Lim CS, Yap PH, Hosseini HMM (2006) Refractive index measurement of single living cells using on-chip Fabry-Perot cavity. Appl Phys Lett 89(20): 203901CrossRefGoogle Scholar
  33. Trä07.
    Träger F (2007) Handbook of lasers and optics. Springer.Google Scholar
  34. WA05.
    Wilson WC, Atkinson GM (2005) MOEMS modeling using the geometrical matrix toolbox. Technical report, NASA, Langley Research CenterGoogle Scholar
  35. Wel91.
    Wellner M (1991) Wave optics. In: Elements of physics, pp 543–575. SpringerGoogle Scholar

Copyright information

© British Computer Society 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada

Personalised recommendations