Formal Aspects of Computing

, Volume 26, Issue 1, pp 37–62 | Cite as

Cryptographic protocols with everyday objects

Original Article

Abstract

Most security protocols appearing in the literature make use of cryptographic primitives that assume that the participants have access to some sort of computational device. However, there are times when there is need for a security mechanism to evaluate some result without leaking sensitive information, but computational devices are unavailable. We discuss here various protocols for solving cryptographic problems using everyday objects: coins, dice, cards, and envelopes.

Keywords

CSP Formal modelling Formal methods Cryptography Everyday objects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cha88.
    Chaum D (1988) The dining cryptographers problem: unconditional sender and recipient untraceability. J Cryptol 1(1): 65–75CrossRefMATHMathSciNetGoogle Scholar
  2. ElG85.
    ElGamal T (1985) A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans Inf Theory 31: 469–472CrossRefMATHMathSciNetGoogle Scholar
  3. For97.
    Formal Systems (Europe) Ltd (1997) Failures-divergence refinement—FDR 2 user manual. Formal Systems’ web site. http://www.formal.demon.co.uk/FDR2.html
  4. GW05.
    Goldsmith M, Whittaker P (2005) A CSP frontend for probabilistic tools. Technical report, The FORWARD project, June 2005. http://forward-project.org.uk/PDF_Files/D14.pdf. Accessed 14 Aug 2012
  5. KLN+06.
    Kacprzak M, Lomuscio A, Niewiadomski A, Penczek W, Raimondi F, Szreter M (2006) Comparing BDD and SAT based techniques for model checking Chaum’s dining cryptographers protocol. Fundam Inf 72(1–3): 215–234MATHMathSciNetGoogle Scholar
  6. MMSS96.
    Morgan C, Mciver A, Seidel K, Sanders JW (1996) Refinement-oriented probability for CSP. Form Asp Comp 8(6): 617–647CrossRefMATHGoogle Scholar
  7. MRR10.
    Mauw S, Radomirović S, Ryan PY (2010) Security protocols for Secret Santa. In: Proceedings of 18th Security Protocols workshop, 24–26 March 2010. Lecture notes in computer science. SpringerGoogle Scholar
  8. RGG+95.
    Roscoe AW, Gardiner PHB, Goldsmith M, Hulance JR, Jackson DM, Scattergood JB (1995) Hierarchical compression for model-checking CSP or how to check 1020 dining philosophers for deadlock. In: Brinksma Ed, Cleaveland R, Guldstrand Larsen K, Margaria T, Steffen B (eds) TACAS. Lecture notes in computer science, vol 1019. Springer, Berlin, pp 133–152Google Scholar
  9. Ros10.
    Roscoe AW (2010) Understanding concurrent systems. 1st edn. Springer, New YorkCrossRefMATHGoogle Scholar
  10. Sch99a.
    Schneider SA (1999) Concurrent and real-time systems: the CSP approach. WileyGoogle Scholar
  11. Sch99b.
    Schneier B (1999) The solitaire encryption algorithm. http://www.schneier.com/solitaire.html. Accessed 22 March 2011
  12. Sin11.
    Singh S (2011) Personal communication, March 2011Google Scholar
  13. SS96.
    Schneider S, Sidiropoulos A (1996) CSP and anonymity. In: Bertino E, Kurth H, Martella G, Montolivo E (eds) European symposium on Research Into Computer Security (ESORICS) 96. Lecture notes in computer science, vol 1146, pp 198–218. Springer, Berlin-HeidelbergGoogle Scholar
  14. Ste00.
    Stephenson N (2000) Cryptonomicon. Arrow BooksGoogle Scholar
  15. vdMS04.
    van der Meyden R, Su K (2004) Symbolic model checking the knowledge of the dining cryptographers. In: Proceedings of the 17th IEEE Computer Security Foundations Workshop (CSFW), June 2004Google Scholar

Copyright information

© British Computer Society 2013

Authors and Affiliations

  • James Heather
    • 1
  • Steve Schneider
    • 1
  • Vanessa Teague
    • 2
  1. 1.Department of ComputingUniversity of SurreySurreyUK
  2. 2.Department of Computer Science and Software EngineeringUniversity of MelbourneMelbourneAustralia

Personalised recommendations