Skip to main content
Log in

Layered reasoning for randomized distributed algorithms

  • Original Article
  • Published:
Formal Aspects of Computing

Abstract

This paper adopts the communication closed layer (CCL) concept of Elrad and Francez to the formal reasoning of randomized distributed algorithms. We do so by enriching probabilistic automata (PA) with a layered composition operator, an intermediate between parallel and sequential composition. Layered composition is used to establish probabilistic counterparts of the CCL laws that exploit independence and/or precedence conditions between the constituent PA. The probabilistic CCL laws enable partial order (po-) equivalence when layered composition is replaced by sequential composition. Such po-equivalence induces a purely syntactic partial-order state space reduction via layered separation in compositions of PA while preserving probabilistic next-free linear-time properties. The feasibility of such layered separation is demonstrated on a randomized mutual exclusion algorithm by Kushilevitz and Rabin, complementing an algebraic approach (for analyzing this algorithm) by McIver, Gonzalia, Cohen, and Morgan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attiya H, Censor K (2008) Tight bounds for asynchronous randomized consensus. J ACM 55(5)

  2. Baier C, Größer M, Ciesinski F (2004) Partial order reduction for probabilistic systems. In: Quantitative evaluation of systems (QEST), IEEE CS Press, pp 230–239

  3. Canetti R, Cheung L, Kaynar DK, Liskov M, Lynch NA, Pereira O, Segala R (2008) Analyzing security protocols using time-bounded task-PIOAs. Discret Event Dyn Syst 18(1): 111–159

    Article  MATH  Google Scholar 

  4. Cohen E (2000) Separation and reduction. In: Backhouse RC., Oliveira JN (eds) Mathematics of program construction (MPC), volume 1837 of LNCS.. Springer, New York, pp 45–59

    Google Scholar 

  5. D’Argenio PR., Niebert P (2004) Partial order reduction on concurrent probabilistic programs. In: Quantitative evaluation of systems (QEST). IEEE CS Press, pp 240–249

  6. Elrad T, Francez N (1982) Decomposition of distributed programs into communication-closed layers. Sci Comput Program 2(3): 155–173

    Article  MATH  Google Scholar 

  7. Janssen W, Zwiers J (1992) From sequential layers to distributed processes: deriving a distributed minimum weight spanning tree algorithm. In: Principles of distributed computing (PODC). ACM Press, pp 215–227

  8. Kwiatkowska MZ, Norman G (2002) Verifying randomized Byzantine agreement. In Peled D, Vardi MY (eds) Formal description techniques (FORTE), volume 2529 of LNCS. Springer, pp 194–209

  9. Kwiatkowska MZ, Norman G, Parker D (2004) Probabilistic symbolic model checking with PRISM: a hybrid approach. Int J Softw Tools Technol Transf 6(2): 128–142

    Article  Google Scholar 

  10. Koenig D (1936) Theorie der Endlichen und Unendlichen Graphen: Kombinatorische Topologie der Streckenkomplexe. Akad. Verlag, Leipzig

    Google Scholar 

  11. Kushilevitz E, Rabin MO (1992) Randomized mutual exclusion algorithms revisited. In: PODC, pp 275–283

  12. Katoen J-P, van de Pol JC, Stoelinga MIA, Timmer M (2012) A linear process-algebraic format with data for probabilistic automata. Theor Comput Sci 413(1): 36–57

    Article  MATH  Google Scholar 

  13. Lehmann DJ, Rabin MO (1981) On the advantages of free choice: a symmetric and fully distributed solution to the dining philosophers problem. In: Principles of programming languages (POPL). ACM Press, pp 133–138

  14. McIver AK, Gonzalia C, Cohen E, Morgan CC (2008) Using probabilistic Kleene algebra pKA for protocol verification. J Log Algebr Program 76(1): 90–111

    Article  MathSciNet  MATH  Google Scholar 

  15. Milner R (1989) Communication and concurrency. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  16. McIver AK, Morgan CC (2004) Abstraction, refinement and proof for probabilistic systems. Springer, New York

    Google Scholar 

  17. Moses Y, Rajsbaum S (2002) A layered analysis of consensus. SIAM J Comput 31(4): 989–1021

    Article  MathSciNet  MATH  Google Scholar 

  18. Olderog E-R, Swaminathan M (2010) Layered composition for timed automata. In: Chatterjee K, Henzinger TA (eds) Formal modeling and analysis of timed systems (FORMATS), volume 6246 of LNCS. Springer, pp 228–242

  19. Pogosyants A, Segala R, Lynch NA (2000) Verification of the randomized consensus algorithm of Aspnes and Herlihy: a case study. Distrib Comput 13(3): 155–186

    Article  Google Scholar 

  20. Rabin MO (1982) n-process mutual exclusion with bounded waiting by 4 log n shared variables. J Comput Syst Sci 25(1): 66–75

    Article  MathSciNet  MATH  Google Scholar 

  21. Saias I (1992) Proving probabilistic correctness statements: the case of Rabin’s algorithm for mutual exclusion. In: Principles of distributed computing (PODC). ACM Press, pp 263–274

  22. Stomp FA, de Roever W-P (1994) A principle for sequential reasoning about distributed algorithms. Formal Aspects Comput 6(6): 716–737

    MATH  Google Scholar 

  23. Segala R (2000) Verification of randomized distributed algorithms. In: Brinksma E, Hermanns H, Katoen J-P (eds) Formal methods and performance analysis, volume 2090 of LNCS. Springer, pp 232–260

  24. Segala R, Lynch NA (1995) Probabilistic simulations for probabilistic processes. Nordic J Comput 2(2): 250–273

    MathSciNet  MATH  Google Scholar 

  25. Stoelinga M (2002) An introduction to probabilistic automata. Bull EATCS 78: 176–198

    MathSciNet  MATH  Google Scholar 

  26. Stoelinga M, Vaandrager FW (1999) Root contention in IEEE 1394. In: Katoen J-P (ed) AMAST workshop on real-time and probabilistic systems (ARTS), volume 1601 of LNCS. Springer, pp 53–74

  27. Timmer M, Stoelinga M, van de Pol J (2011) Confluence reduction for probabilistic systems. In: Abdulla PA, Leino KRM (eds) Tools and algorithms for the construction and analysis of systems (TACAS), volume 6605 of LNCS. Springer, pp 311–325

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Swaminathan.

Additional information

by Peter Höfner, Robert van Glabbeek and Ian Hayes

This work is supported by the German Research Foundation through the Trans-Regio Collaborative Research Center (SFB/TR 14) AVACS (http://www.avacs.org), and by the EU through the FP7 project MoVeS (http://www.movesproject.eu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaminathan, M., Katoen, JP. & Olderog, ER. Layered reasoning for randomized distributed algorithms. Form Asp Comp 24, 477–496 (2012). https://doi.org/10.1007/s00165-012-0231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00165-012-0231-x

Keywords

Navigation