Ahmed-Kristensen S, Christensen BT, Lenau TA (2014) Naturally original: stimulating creative design through biological analogies and Random images. In: International Design Conference, DESIGN. Dubrovnik, pp 427–436
Altshuller GS (1984) Creativity as an exact science: the theory of the solution of inventive problems. Gordon and Breach Science Publishers
Alvargonzález D (2011) Multidisciplinarity, interdisciplinarity, transdisciplinarity, and the sciences. Int Stud Philos Sci 25:387–403. https://doi.org/10.1080/02698595.2011.623366
Article
Google Scholar
Aoussat A, Christofol H, Le Coq M (2000) The new product design—a transverse approach. J Eng Des 11:399–417. https://doi.org/10.1080/09544820010000971
Article
Google Scholar
Badarnah L, Kadri U (2015) A methodology for the generation of biomimetic design concepts. Archit Sci Rev 58:120–133. https://doi.org/10.1080/00038628.2014.922458
Article
Google Scholar
Baumeister D, Tocke R, Dwyer J et al (2013) Biomimicry Resource Handbook: a seed bank of knowledge and best practices, 2013th edn. CreateSpace Independent Publishing Platform, Missoula
Google Scholar
Bhasin D, McAdams DA (2018) The characterization of biological organization, abstraction, and novelty in biomimetic design. Designs 2:54. https://doi.org/10.3390/designs2040054
Article
Google Scholar
Biomimicry Institute (2002) AskNature—innovation inspired by nature. In: AskNature. https://asknature.org/. Accessed 23 Nov 2018
Blessing LTM, Chakrabarti A (2009) DRM, a design research methodology. DRM, a design research methodology. Springer, London, pp 1–397
Chapter
Google Scholar
Campell RL (2001) Studies in reflecting abstraction. Psychology Press, New York
Google Scholar
Chakrabarti A, Sarkar P, Leelavathamma B, Nataraju BS (2005) A functional representation for aiding biomimetic and artificial inspiration of new ideas. Artif Intell Eng Des Anal Manuf AIEDAM 19:113–132. https://doi.org/10.1017/S0890060405050109
Article
Google Scholar
Cheong H, Shu LH (2012) Automatic extraction of causally related functions from natural-language text for biomimetic design
Cheong H, Chiu I, Shu LH et al (2011) Biologically meaningful keywords for functional terms of the functional basis. J Mech Des 133:021007. https://doi.org/10.1115/1.4003249
Article
Google Scholar
Choi B, Pak A (2006) Multidisciplinarity, inter-disciplinarity and trans-disciplinarity in health research. Clin Investig Med. https://doi.org/10.1002/eji.201090065
Article
Google Scholar
Cooper R (2019) Design research—its 50-year transformation. Des Stud. https://doi.org/10.1016/j.destud.2019.10.002
Article
Google Scholar
Cross N (1993) A history of design methodology. Design methodology and relationships with science. Springer, Dordrecht, pp 15–27
Chapter
Google Scholar
Deldin J-M, Schuknecht M (2014) The AskNature database: enabling solutions in biomimetic design. Biologically inspired design. Springer, London, pp 17–27
Chapter
Google Scholar
Drack M, Limpinsel M, De Bruyn G et al (2018) Towards a theoretical clarification of biomimetics using conceptual tools from engineering design. Bioinspiration Biomim 13:016007. https://doi.org/10.1088/1748-3190/aa967c
Article
Google Scholar
Fayemi P-E (2016) Innovation through bio-inspired design : suggestion of a structuring model for biomimetic process and methods. ENSAM, Paris
Google Scholar
Fayemi P-E, Maranzana N, Aoussat A, et al (2015) Modeling biological systems to facilitate their selection during a bio-inspired design process. In: International Conference on Engineering Design, ICED. Milan, pp 225–234
Fayemi P-E, Wanieck K, Zollfrank C et al (2017) Biomimetics: Process, tools and practice. Bioinspiration Biomim 12:11002. https://doi.org/10.1088/1748-3190/12/1/011002
Article
Google Scholar
Gamage A, Hyde R (2012) A model based on biomimicry to enhance ecologically sustainable design. Archit Sci Rev 55:224–235. https://doi.org/10.1080/00038628.2012.709406
Article
Google Scholar
Gentner D (1989) The mechanisms of analogical learning. In: Cambridge (ed) Similarity and analogical reasoning. Cambridge, pp 199–241
Gero JS (1990) Design prototypes: a knowledge representation schema for design. AI Mag 11:26. https://doi.org/10.1609/aimag.v11i4.854
Article
Google Scholar
Goel AK, Vattam S, Wiltgen B, Helms M (2014) Information-processing theories of biologically inspired design. Biologically inspired design. Springer, London, pp 127–152
Chapter
Google Scholar
Graeff E, Maranzana N, Aoussat A (2018) Conception biomimétique : quels acteurs pour quelles attentes ? (Biomimetic Design : which actors for what expectations ?). In: CONFERE conference
Graeff E, Maranzana N, Aoussat A (2019a) Biomimetics, where are the biologists? J Eng Des 30:289–310. https://doi.org/10.1080/09544828.2019.1642462
Article
Google Scholar
Graeff E, Maranzana N, Aoussat A (2019b) Engineers’ and Biologists’ roles during biomimetic design processes, towards a methodological symbiosis. In: International Conference on Engineering Design, ICED. Delft, pp 319–328
Hashemi Farzaneh H, Helms KM, Lindemann U (2015) Influence of information and knowledge from biology on the variety of technical solution ideas. In: Proceedings of the International Conference on Engineering Design. ICED, pp 197–206
Helfman Cohen Y, Reich Y (2016) Biomimetic design method for innovation and sustainability
Helms M, Goel AK (2014) The four-box method of problem specification and analogy evaluation in biologically inspired design. In: Volume 7: 2nd Biennial International Conference on Dynamics for Design; 26th International Conference on Design Theory and Methodology. ASME
Helms ME, Vattam SS, Goel AK (2009) Biologically inspired design: process and products. Des Stud 30:606–622. https://doi.org/10.1016/j.destud.2009.04.003
Article
Google Scholar
Hoagland MB, Dodson B (1995) The way life works, 1st edn. Crown, New York
Google Scholar
ISO/TC266 (2015) Biomimétique—Terminologie, concepts et méthodologie
Ke J, Wallace JS, Chiu I, Shu LH (2010) Supporting Biomimetic Design by Embedding Metadata in Natural-Language Corpora. In: Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2010, pp 1–8
Keshwani S, Chakrabarti A (2015) Influence of analogical domains and abstraction levels on novelty of designs. In: ICDC 2015—Proceedings of the 3rd International Conference on Design Creativity
Keshwani S, Lenau TA, Ahmed-Kristensen S, Chakrabarti A (2017) Comparing novelty of designs from biological-inspiration with those from brainstorming. J Eng Des 28:654–680. https://doi.org/10.1080/09544828.2017.1393504
Article
Google Scholar
Kruiper R, Vincent JFV, Abraham E et al (2018) Towards a design process for computer-aided biomimetics. Biomimetics 3:14. https://doi.org/10.3390/biomimetics3030014
Article
Google Scholar
Lahonde N (2010) Design process improvement : proposal of a model for design methods selection to support the decision. ENSAM, Paris
Google Scholar
Lenau TA (2009) Biomimetics as a design methodology—Possibilities and challenges. In: International Conference on Engineering Design, ICED. Standford, pp 121–132
Lenau TA, Pigosso DCA, McAloone T, Lakhtakia A (2020) Biologically inspired design for environment. In: Lakhtakia A, Martín-Palma RJ, Knez M (eds) Bioinspiration, biomimetics, and bioreplication X. SPIE
Letard A, Maranzana N, Raskin K, Aoussat A (2018) Design et biomimétisme : quel rôle pour le designer ? In: CONFERE conference
Lindemann U, Gramann J (2004) Engineering design using biological principles. In: International Design Conference, DESIGN. Dubrovnik, pp 355–360
Lipol LS, Haq J (2011) Risk analysis method : FMEA/FMECA in the organizations. Int J Basic Appl Sci 11:1–9
Google Scholar
Lotrecchiano GR (2010) Complexity Leadership in transdisciplinary learning environments. Int J Transdiscipl Res 5:29–63
Google Scholar
Mak TW, Shu LH (2004) Abstraction of biological analogies for design. CIRP Ann Manuf Technol 53:117–120. https://doi.org/10.1016/S0007-8506(07)60658-1
Article
Google Scholar
Nagel JKS, Nagel RL, Stone RB, McAdams DA (2010) Function-based, biologically inspired concept generation. Artif Intell Eng Des Anal Manuf AIEDAM 24:521–535. https://doi.org/10.1017/S0890060410000375
Article
Google Scholar
Nagel JKS, Nagel RL, Stone RB (2011) Abstracting biology for engineering design. Int J Des Eng 4:23. https://doi.org/10.1504/ijde.2011.041407
Article
Google Scholar
Nagel JKS, Schmidt L, Born W (2018) Establishing analogy categories for bio-inspired design. Designs 2:47. https://doi.org/10.3390/designs2040047
Article
Google Scholar
Ohno T (1978) Toyota production system: beyond large-scale Production, 1st edn. Productivity Press, Cambridge
Google Scholar
Piaget J (1977) Recherches sur l’abstraction réfléchissante. Presses Universitaires de France, Paris
Google Scholar
Rovalo E, McCardle J, Smith E, Hooker G (2020) Growing the practice of biomimicry: opportunities for mission-based organisations based on a global survey of practitioners. Technol Anal Strateg Manag. https://doi.org/10.1080/09537325.2019.1634254
Article
Google Scholar
Sarkar P, Chakrabarti A (2011) Assessing design creativity. Des Stud. https://doi.org/10.1016/j.destud.2011.01.002
Article
Google Scholar
Schöfer M (2015) Processes and methods for interdisciplinary problem solving and technology integration in knowledge-intensive domain. ENSAM, Paris
Google Scholar
Schöfer M, Maranzana N, Aoussat A et al (2018) Distinct and combined effects of disciplinary composition and methodological support on problem solving in groups. Creat Innov Manag 27:102–115. https://doi.org/10.1111/caim.12258
Article
Google Scholar
Snell-Rood E (2016) Interdisciplinarity: bring biologists into biomimetics. Nature 529:277–278. https://doi.org/10.1038/529277a
Article
Google Scholar
Srinivasan V, Chakrabarti A (2009) An empirical evaluation of novelty–SAPPhIRE relationship. In: Proceedings of the ASME design engineering technical conference, pp 985–994
Svendsen N, Lenau TA (2019) How does biologically inspired design cope with multi-functionality? Proc Des Soc Int Conf Eng Des. https://doi.org/10.1017/dsi.2019.38
Article
Google Scholar
Tinsley A, Midha PA, Nagel RL et al (2008) Exploring the use of functional models as a foundation for biomimetic conceptual design. In: 2007 Proc ASME Int Des Eng Tech Conf Comput Inf Eng Conf DETC2007 3 PART A:1–15. https://doi.org/10.1115/DETC2007-35604
Vandevenne D, Verhaegen P-A, Dewulf S, Duflou JR (2014) A scalable approach for ideation in biologically inspired design. Artif Intell Eng Des Anal Manuf AIEDAM 29:19–31. https://doi.org/10.1017/S0890060414000122
Article
Google Scholar
Vattam SS, Goel AK (2013) Seeking bioinspiration online: a descriptive account. In: International Conference on Engineering Design, ICED. Seoul, pp 347–356
Vattam SS, Helms ME, Goel AK (2007) Biologically-inspired innovation in engineering design: a cognitive study. Georgia Institute of Technology
Vattam SS, Helms ME, Goel AK (2008) Compound analogical design: interaction between problem decomposition and analogical transfer in biologically inspired design. Des Comput Cogn 08:377–396. https://doi.org/10.1007/978-1-4020-8728-8_20
Article
Google Scholar
Vattam SS, Wiltgen B, Helms ME et al (2011) DANE: fostering creativity in and through biologically inspired design. Design creativity 2010. Springer, London, pp 115–122
Chapter
Google Scholar
Vincent JFV (2016) TRIZ as a primary tool for biomimetics. Research and practice on the theory of inventive problem solving (TRIZ). Springer, Cham, pp 225–235
Chapter
Google Scholar
Vincent JFV (2017) The trade-off: a central concept for biomimetics. Bioinspired Biomim Nanobiomaterials 6:67–76. https://doi.org/10.1680/jbibn.16.00005
Article
Google Scholar
Vincent JFV, Cavallucci D (2018) Development of an ontology of biomimetics based on altshuller’s matrix. IFIP advances in information and communication technology. Springer, Cham, pp 14–25
Google Scholar
Vincent JFV, Bogatyreva OA, Bogatyrev NR et al (2006) Biomimetics: its practice and theory. J R Soc Interface 3:471–482. https://doi.org/10.1098/rsif.2006.0127
Article
Google Scholar
Wanieck K, Fayemi P-E, Maranzana N et al (2017) Biomimetics and its tools. Bioinspired Biomim Nanobiomaterials 6:53–66. https://doi.org/10.1680/jbibn.16.00010
Article
Google Scholar
Weidner BV, Nagel JKS, Weber HJ (2018) Facilitation method for the translation of biological systems to technical design solutions. Int J Des Creat Innov 6:211–234. https://doi.org/10.1080/21650349.2018.1428689
Article
Google Scholar
Wynn D, Clarkson J (2005) Chapter 1 Models of designing. In: Design process improvement—a review of current practic,. pp 34–59
Yen J, Helms ME, Goel AK et al (2014) Adaptive evolution of teaching practices in biologically inspired design. Biologically inspired design. Springer, London, pp 153–199
Chapter
Google Scholar