A state-transition model of team conceptual design activity

Abstract

The purpose of the study is to model the micro-scale process patterns which can be identified during team conceptual design activities. A state-transition model has been developed and used to empirically investigate the patterns of design operations during two types of team conceptual design activities: ideation and concept review. The presented work builds on the perception of design problems as ill-defined and implies that conceptual design activities involve the simultaneous development of problems and solutions using three distinctive design operations—analysis, synthesis, and evaluation. The three design operations have been defined as fine-grain design steps performed by design teams when exploring the content of both the problem and the solution dimensions of the design space. Moreover, design operations have been conceptualised as transitions between states of the explored design space, thus providing a basis for the state-transition model. The model’s ability to map and visualise proportions of design operation sequences emerging during ideation and concept review has facilitated the identification of both the activity-specific patterns and patterns that were likely to appear during both types of empirically investigated activities. The two activities exhibited similar patterns, such as alternation of solution synthesis and analysis, sequences of synthesis, analysis and evaluation within solution space, and the potential co-evolution episodes. Nevertheless, divergent traits have been identified for ideation, and convergent traits for concept review, based on the significant differences in proportions of design operations and their sequences.

This is a preview of subscription content, log in to check access.

Fig. 1

(adopted from Reymen et al. 2006)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adams RS, Cardella M, Purzer S (2016) Analyzing design review conversations: connecting design knowing, being and coaching. Des Stud 45:1–8. https://doi.org/10.1016/j.destud.2016.03.001

    Article  Google Scholar 

  2. Afacan Y, Demirkan H (2011) An ontology-based universal design knowledge support system. Knowl Based Syst 24(4):530–541. https://doi.org/10.1016/j.knosys.2011.01.002

    Article  Google Scholar 

  3. Andreasen MM, Hansen CT, Cash P (2015) Conceptual design: interpretations, mindset and models. Springer, Cham

    Google Scholar 

  4. Asimow M (1962) Introduction to design. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  5. Aurisicchio M, Bracewell RH, Wallace KM (2013) Characterising the information requests of aerospace engineering designers. Res Eng Des 24(1):43–63. https://doi.org/10.1007/s00163-012-0136-y

    Article  Google Scholar 

  6. Ball LJ, Onarheim B, Christensen BT (2010) Design requirements, epistemic uncertainty and solution development strategies in software design. Des Stud 31(6):567–589. https://doi.org/10.1016/j.destud.2010.09.003

    Article  Google Scholar 

  7. Bender B (2003) Task design and task analysis for empirical studies into design activity. J Eng Des 14(4):399–408. https://doi.org/10.1080/09544820310001606894

    Article  Google Scholar 

  8. Brissaud D, Garro O, Poveda O (2003) Design process rationale capture and support by abstraction of criteria. Res Eng Des 14(3):162–172. https://doi.org/10.1007/s00163-003-0038-0

    Article  Google Scholar 

  9. Cardoso C, Badke-Schaub P, Eris O (2016) Inflection moments in design discourse: how questions drive problem framing during idea generation. Des Stud 46:59–78. https://doi.org/10.1016/j.destud.2016.07.002

    Article  Google Scholar 

  10. Casakin H, Badke-Schaub P (2015) Mental models and creativity in engineering and architectural design teams. In: Gero J, Hanna S (eds) Design computing and cognition’14. Springer, Cham, pp 155–171

    Google Scholar 

  11. Casakin H, Badke-Schaub P (2017) Sharedness of team mental models in the course of design-related interaction between architects and clients. Des Sci 3(e14):1–21. https://doi.org/10.1017/dsj.2017.15

    Article  Google Scholar 

  12. Cash P, Maier A (2016) Prototyping with your hands: the many roles of gesture in the communication of design concepts. J Eng Des 27(1–3):118–145. https://doi.org/10.1080/09544828.2015.1126702

    Article  Google Scholar 

  13. Cash P, Štorga M (2015) Multifaceted assessment of ideation: using networks to link ideation and design activity. J Eng Des 26(10–12):391–415. https://doi.org/10.1080/09544828.2015.1070813

    Article  Google Scholar 

  14. Cash PJ, Hicks BJ, Culley SJ (2013) A comparison of designer activity using core design situations in the laboratory and practice. Des Stud 34(5):575–611. https://doi.org/10.1016/j.destud.2013.03.002

    Article  Google Scholar 

  15. Chakrabarti A, Morgenstern S, Knaab H (2004) Identification and application of requirements and their impact on the design process: a protocol study. Res Eng Des 15(1):22–39. https://doi.org/10.1007/s00163-003-0033-5

    Article  Google Scholar 

  16. Cross N (2001) Design cognition: results from protocol and other empirical studies of design activity. In: Newstatter W, McCracken M (eds) Design knowing and learning: cognition in design education. Elsevier, Oxford, pp 79–103

    Google Scholar 

  17. Cross N, Clayburn Cross A (1995) Observations of teamwork and social processes in design. Des Stud 16(2):143–170. https://doi.org/10.1016/0142-694X(94)00007-Z

    Article  Google Scholar 

  18. Deken F, Kleinsmann M, Aurisicchio M et al (2012) Tapping into past design experiences: knowledge sharing and creation during novice-expert design consultations. Res Eng Des 23(3):203–218. https://doi.org/10.1007/s00163-011-0123-8

    Article  Google Scholar 

  19. Dinar M, Shah JJ, Cagan J et al (2015) Empirical studies of designer thinking: past, present, and future. J Mech Des 137(2):021101. https://doi.org/10.1115/1.4029025

    Article  Google Scholar 

  20. Dorst K, Cross N (2001) Creativity in the design process: co-evolution of problem-solution. Des Stud 22(5):425–437. https://doi.org/10.1016/S0142-694X(01)00009-6

    Article  Google Scholar 

  21. Dorst K, Vermaas PE (2005) John Gero’s function-behaviour-structure model of designing: a critical analysis. Res Eng Des 16(1–2):17–26. https://doi.org/10.1007/s00163-005-0058-z

    Article  Google Scholar 

  22. Eckert C, Clarkson J (2005) The reality of design. In: Clarkson J, Eckert C (eds) Design process improvement: a review of current practice. Springer, London, pp 1–29

    Google Scholar 

  23. Eckert CM, Stacey M, Wyatt D, Garthwaite P (2012) Change as little as possible: creativity in design by modification. J Eng Des 23(4):337–360. https://doi.org/10.1080/09544828.2011.639299

    Article  Google Scholar 

  24. Eisenbart B, Gericke K, Blessing LTM (2017) Taking a look at the utilisation of function models in interdisciplinary design: insights from ten engineering companies. Res Eng Des 28(3):299–331. https://doi.org/10.1007/s00163-016-0242-3

    Article  Google Scholar 

  25. Ensici A, Badke-Schaub P, Bayazit N, Lauche K (2013) Used and rejected decisions in design teamwork. CoDesign 9(2):113–131. https://doi.org/10.1080/15710882.2013.782411

    Article  Google Scholar 

  26. Eris O, Martelaro N, Badke-Schaub P (2014) A comparative analysis of multimodal communication during design sketching in co-located and distributed environments. Des Stud 35(6):559–592. https://doi.org/10.1016/j.destud.2014.04.002

    Article  Google Scholar 

  27. Fiorineschi L, Rotini F, Rissone P (2016) A new conceptual design approach for overcoming the flaws of functional decomposition and morphology. J Eng Des 27(7):438–468. https://doi.org/10.1080/09544828.2016.1160275

    Article  Google Scholar 

  28. Frankenberger E, Auer P (1997) Standardized observation of team-work in design. Res Eng Des 9(1):1–9. https://doi.org/10.1007/BF01607053

    Article  Google Scholar 

  29. Gagniuc PA (2017) Markov chains: from theory to implementation and experimentation. Wiley, Hoboken

    Google Scholar 

  30. Gero JS (1990) Design prototypes: a knowledge representation schema for design. AI Mag 11(4):26–36. https://doi.org/10.1609/aimag.v11i4.854

    Article  Google Scholar 

  31. Gero JS, Jiang H (2016) Exploring the design cognition of concept design reviews using the FBS-based protocol analysis. In: Adams RS, Siddiqui JA (eds) Analyzing design review conversations. Purdue University Press, West Lafayette. https://doi.org/10.5703/1288284315931

    Google Scholar 

  32. Gero JS, Kan JWT (2016) Scientific models from empirical design research. In: Cash P, Stanković T, Štorga M (eds) Experimental design research. Springer, Cham, pp 253–270

    Google Scholar 

  33. Gero JS, Kannengiesser U (2014) The function-behaviour-structure ontology of design. In: Chakrabarti A, Blessing L (eds) An anthology of theories and models of design. Springer, London, pp 263–283. https://doi.org/10.1007/978-1-4471-6338-1_13

    Google Scholar 

  34. Gero JS, Jiang H, Williams CB (2013) Design cognition differences when using unstructured, partially structured, and structured concept generation creativity techniques. Int J Des Creat Innov 1(4):196–214. https://doi.org/10.1080/21650349.2013.801760

    Article  Google Scholar 

  35. Goldschmidt G (2014) Linkography: unfolding the design process. The MIT, Cambridge

    Google Scholar 

  36. Goldschmidt G (2016) Linkographic evidence for concurrent divergent and convergent thinking in creative design. Creat Res J 28(2):115–122. https://doi.org/10.1080/10400419.2016.1162497

    Article  Google Scholar 

  37. Gonçalves M, Cardoso C, Badke-Schaub P (2014) What inspires designers? Preferences on inspirational approaches during idea generation. Des Stud 35(1):29–53. https://doi.org/10.1016/j.destud.2013.09.001

    Article  Google Scholar 

  38. Harvey S, Kou CY (2013) Collective engagement in creative tasks: the role of evaluation in the creative process in groups. Adm Sci Q 58(3):346–386. https://doi.org/10.1177/0001839213498591

    Article  Google Scholar 

  39. Hatcher G, Ion W, Maclachlan R, Marlow M, Simpson B, Wilson N, Wodehouse A (2018) Using linkography to compare creative methods for group ideation. Des Stud 58:127–152. https://doi.org/10.1016/j.destud.2018.05.002

    Article  Google Scholar 

  40. Hay L, Duffy AHB, McTeague C et al (2017) A systematic review of protocol studies on conceptual design cognition: design as search and exploration. Des Sci 3(e10):1–36. https://doi.org/10.1017/dsj.2017.11

    Article  Google Scholar 

  41. Howard TJ, Culley SJ, Dekoninck E (2008) Describing the creative design process by the integration of engineering design and cognitive psychology literature. Des Stud 29(2):160–180. https://doi.org/10.1016/j.destud.2008.01.001

    Article  Google Scholar 

  42. Howard TJ, Dekoninck EA, Culley SJ (2010) The use of creative stimuli at early stages of industrial product innovation. Res Eng Des 21(4):263–274. https://doi.org/10.1007/s00163-010-0091-4

    Article  Google Scholar 

  43. Hultén M, Artman H, House D (2018) A model to analyse students’ cooperative idea generation in conceptual design. Int J Technol Des Educ 28(2):451–470. https://doi.org/10.1007/s10798-016-9384-x

    Article  Google Scholar 

  44. Jiang H, Gero JS, Yen CC (2014) Exploring designing styles using a problem-solution division. In: Gero JS (ed) Design computing and cognition’12. Springer, Dordrecht, pp 79–94

    Google Scholar 

  45. Jin Y, Benami O (2010) Creative patterns and stimulation in conceptual design. Artif Intell Eng Des Anal Manuf 24(2):191–209. https://doi.org/10.1017/S0890060410000053

    Article  Google Scholar 

  46. Jin Y, Chusilp P (2006) Study of mental iteration in different design situations. Des Stud 27(1):25–55. https://doi.org/10.1016/j.destud.2005.06.003

    Article  Google Scholar 

  47. Kan JWT, Gero JS, Tang HH (2011) Measuring cognitive design activity changes during an industry team brainstorming session. In: Gero JS (ed) Design computing and cognition’10. Springer, Dordrecht, pp 621–640

    Google Scholar 

  48. Kannengiesser U, Gero JS (2015) Is designing independent of domain? Comparing models of engineering, software and service design. Res Eng Des 26(3):253–275. https://doi.org/10.1007/s00163-015-0195-y

    Article  Google Scholar 

  49. Khaidzir KAM, Lawson B (2013) The cognitive construct of design conversation. Res Eng Des 24(4):331–347. https://doi.org/10.1007/s00163-012-0147-8

    Article  Google Scholar 

  50. Klonek FE, Quera V, Burba M, Kauffeld S (2016) Group interactions and time: using sequential analysis to study group dynamics in project meetings. Group Dyn Theor Res 20(3):209–222. https://doi.org/10.1037/gdn0000052

    Article  Google Scholar 

  51. Kroll E (2013) Design theory and conceptual design: contrasting functional decomposition and morphology with parameter analysis. Res Eng Des 24(2):165–183. https://doi.org/10.1007/s00163-012-0149-6

    Article  Google Scholar 

  52. Kruger C, Cross N (2006) Solution driven versus problem driven design: strategies and outcomes. Des Stud 27(5):527–548. https://doi.org/10.1016/j.destud.2006.01.001

    Article  Google Scholar 

  53. Kurakawa K (2004) A scenario-driven conceptual design information model and its formation. Res Eng Des 15(2):122–137. https://doi.org/10.1007/s00163-004-0050-z

    Article  Google Scholar 

  54. Lawson B, Dorst K (2009) Design expertise, 1st edn. Routledge, London

    Google Scholar 

  55. Liikkanen LA, Perttula M (2009) Exploring problem decomposition in conceptual design among novice designers. Des Stud 30(1):38–59. https://doi.org/10.1016/j.destud.2008.07.003

    Article  Google Scholar 

  56. Liikkanen LA, Perttula M (2010) Inspiring design idea generation: insights from a memory-search perspective. J Eng Des 21(5):545–560. https://doi.org/10.1080/09544820802353297

    Article  Google Scholar 

  57. Liu A, Lu SC-Y (2014) Alternation of analysis and synthesis for concept generation. CIRP Ann Manuf Technol 63(1):177–180. https://doi.org/10.1016/j.cirp.2014.03.094

    MathSciNet  Article  Google Scholar 

  58. Liu YC, Bligh T, Chakrabarti A (2003) Towards an “ideal” approach for concept generation. Des Stud 24(4):341–355. https://doi.org/10.1016/S0142-694X(03)00003-6

    Article  Google Scholar 

  59. López-Mesa B, Mulet E, Vidal R, Thompson G (2011) Effects of additional stimuli on idea-finding in design teams. J Eng Des 22(1):31–54. https://doi.org/10.1080/09544820902911366

    Article  Google Scholar 

  60. Macmillan S, Steele J, Austin S et al (2001) Development and verification of a generic framework for conceptual design. Des Stud 22(2):169–191. https://doi.org/10.1016/S0142-694X(00)00025-9

    Article  Google Scholar 

  61. Maher ML, Tang H (2003) Co-evolution as a computational and cognitive model of design. Res Eng Des 14(1):47–64. https://doi.org/10.1007/s00163-002-0016-y

    Article  Google Scholar 

  62. Maher ML, Poon J, Boulanger S (1996) Formalising design exploration as co-evolution: a combined gene approach. In: Gero JS, Sudweeks F (eds) Advances in formal design methods for CAD. IFIP—the international federation for information processing. Springer, Boston, pp 3–30

    Google Scholar 

  63. Mc Neill T, Gero JS, Warren J (1998) Understanding conceptual electronic design using protocol analysis. Res Eng Des 10(3):129–140. https://doi.org/10.1007/BF01607155

    Article  Google Scholar 

  64. McComb C, Cagan J, Kotovsky K (2015) Lifting the veil: drawing insights about design teams from a cofnitively-inspired computational model. Des Stud 40:119–142. https://doi.org/10.1016/j.destud.2015.06.005

    Article  Google Scholar 

  65. McDonnell J (1997) Descriptive models for interpreting design. Des Stud 18(4):457–473. https://doi.org/10.1016/S0142-694X(97)00012-4

    Article  Google Scholar 

  66. McMahon C (2015) Design informatics: supporting engineering design processes with information technology. J Indian Inst Sci 95(4):365–377

    Google Scholar 

  67. McTeague C, Duffy A, Campbell G et al (2017) An exploration of design synthesis. In: Maier A, Škec S, Kim H et al (eds) Proceedings of the 21st international conference on engineering design (ICED 17) vol 8: human behaviour in design. The Design Society, Glasgow, pp 279–288

    Google Scholar 

  68. Nikander JB, Liikkanen LA, Laakso M (2014) The preference effect in design concept evaluation. Des Stud 35(5):473–499. https://doi.org/10.1016/j.destud.2014.02.006

    Article  Google Scholar 

  69. Petersson AM, Lundberg J (2018) Developing an ideation method to be used in cross-functional inter-organizational teams by means of action design research. Res Eng Des 29(3):433–457. https://doi.org/10.1007/s00163-018-0283-x

    Article  Google Scholar 

  70. Quera V, Bakeman R, Gnisci A (2007) Observer agreement for event sequences: methods and software for sequence alignment and reliability estimates. Behav Res 39(1):39–49. https://doi.org/10.3758/BF03192842

    Article  Google Scholar 

  71. Reymen IMMJ, Hammer DK, Kroes PA et al (2006) A domain-independent descriptive design model and its application to structured reflection on design processes. Res Eng Des 16(4):147–173. https://doi.org/10.1007/s00163-006-0011-9

    Article  Google Scholar 

  72. Roozenburg NFM, Eekels J (1995) Product design: fundamentals and methods, 2nd edn. Wiley, Chichester

    Google Scholar 

  73. Sarkar P, Chakrabarti A (2014) Ideas generated in conceptual design and their effects on creativity. Res Eng Des 25(3):185–201. https://doi.org/10.1007/s00163-014-0173-9

    Article  Google Scholar 

  74. Sarkar P, Chakrabarti A (2017) A model for the process of idea generation. Des J 20(2):239–257. https://doi.org/10.1080/14606925.2017.1272244

    Article  Google Scholar 

  75. Sauder J, Jin Y (2016) A qualitative study of collaborative stimulation in group design thinking. Des Sci 2(e4):1–25. https://doi.org/10.1017/dsj.2016.1

    Article  Google Scholar 

  76. Smith RP, Tjandra P (1998) Experimental observation of iteration in engineering design. Res Eng Des 10(2):107–117. https://doi.org/10.1007/BF01616691

    Article  Google Scholar 

  77. Smithers T (2002) Synthesis in designing. In: Gero JS (ed) Artificial intelligence in design’02. Springer, Dordrecht, pp 3–24. https://doi.org/10.1007/978-94-017-0795-4_1

    Google Scholar 

  78. Snider C, Dekoninck E, Culley S (2016) Beyond the concept: characterisations of later-stage creative behaviour in design. Res Eng Des 27(3):265–289. https://doi.org/10.1007/s00163-016-0218-3

    Article  Google Scholar 

  79. Sonalkar N, Mabogunje A, Leifer L (2013) Developing a visual representation to characterize moment-to-moment concept generation in design teams. Int J Des Creat Innov 1(2):93–108. https://doi.org/10.1080/21650349.2013.773117

    Article  Google Scholar 

  80. Srinivasan V, Chakrabarti A (2010a) An integrated model of designing. J Comput Inf Sci Eng 10(3):031013. https://doi.org/10.1115/1.3467011

    Article  Google Scholar 

  81. Srinivasan V, Chakrabarti A (2010b) Investigating novelty-outcome relationships in engineering design. Artif Intell Eng Des Anal Manuf 24(2):161–178. https://doi.org/10.1017/S089006041000003X

    Article  Google Scholar 

  82. Stempfle J, Badke-Schaub P (2002) Thinking in design teams—an analysis of team communication. Des Stud 23(5):473–496. https://doi.org/10.1016/S0142-694X(02)00004-2

    Article  Google Scholar 

  83. Stompff G, Smulders F, Henze L (2016) Surprises are the benefits: reframing in multidisciplinary design teams. Des Stud 47:187–214. https://doi.org/10.1016/j.destud.2016.09.004

    Article  Google Scholar 

  84. Sung E, Kelley TR (2018) Identifying design process patterns: a sequential analysis study of design thinking. Int J Technol Des Educ. https://doi.org/10.1007/s10798-018-9448-1 (in press)

    Article  Google Scholar 

  85. Toh CA, Miller SR (2015) How engineering teams select design concepts: a view through the lens of creativity. Des Stud 38:111–138. https://doi.org/10.1016/j.destud.2015.03.001

    Article  Google Scholar 

  86. Toh CA, Miller SR (2016a) Creativity in design teams: the influence of personality traits and risk attitudes on creative concept selection. Res Eng Des 27(1):73–89. https://doi.org/10.1007/s00163-015-0207-y

    Article  Google Scholar 

  87. Toh CA, Miller SR (2016b) Choosing creativity: the role of individual risk and ambiguity aversion on creative concept selection in engineering design. Res Eng Des 27(3):195–219. https://doi.org/10.1007/s00163-015-0212-1

    Article  Google Scholar 

  88. Toh CA, Miller SR, Okudan Kremer GE (2014) The impact of team-based product dissection on design novelty. J Mech Des 136(4):041004. https://doi.org/10.1115/1.4026151

    Article  Google Scholar 

  89. Vasconcelos LA, Crilly N (2016) Inspiration and fixation: questions, methods, findings, and challenges. Des Stud 42:1–32. https://doi.org/10.1016/j.destud.2015.11.001

    Article  Google Scholar 

  90. Visser W (2009) Design: one, but in different forms. Des Stud 30(3):187–223. https://doi.org/10.1016/j.destud.2008.11.004

    Article  Google Scholar 

  91. Vuletic T, Duffy A, Hay L et al (2018) The challenges in computer supported conceptual engineering design. Comput Ind 95:22–37. https://doi.org/10.1016/j.compind.2017.11.003

    Article  Google Scholar 

  92. Watts RD (1966) The elements of design. In: Gregory SA (ed) The design method. Springer, Boston, pp 85–95

    Google Scholar 

  93. Wiltschnig S, Christensen BT, Ball LJ (2013) Collaborative problem-solution co-evolution in creative design. Des Stud 34(5):515–542. https://doi.org/10.1016/j.destud.2013.01.002

    Article  Google Scholar 

  94. Wodehouse AJ, Ion WJ (2010) Information use in conceptual design: existing taxonomies and new approaches. Int J Des 4(3):53–65

    Google Scholar 

  95. Wynn D, Clarkson J (2005) Models of designing. In: Clarkson J, Eckert C (eds) Design process improvement: a review of current practice. Springer, London, pp 34–59

    Google Scholar 

  96. Wynn D, Clarkson P (2017) Process models in design and development. Res Eng Des 29(2):161–202. https://doi.org/10.1007/s00163-017-0262-7

    Article  Google Scholar 

  97. Wynn DC, Eckert CM (2017) Perspectives on iteration in design and development. Res Eng Des 28(2):153–184. https://doi.org/10.1007/s00163-016-0226-3

    Article  Google Scholar 

  98. Yilmaz S, Daly SR (2016) Feedback in concept development: comparing design disciplines. Des Stud 45(A):137–158. https://doi.org/10.1016/j.destud.2015.12.008

    Article  Google Scholar 

Download references

Acknowledgements

This paper reports on work funded by the Croatian Science Foundation MInMED (http://www.minmed.org) and TAIDE projects (http://www.taide.org). The authors would like to thank Philip Cash (TU Denmark) for providing the multimedia data of the experiment sessions.

Funding

Croatian Science Foundation project IP-2018-01-7269: Team Adaptability for Innovation-Oriented Product Development - TAIDE (http://www.taide.org).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomislav Martinec.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 10 and 11.

Table 10 Averaged proportions of moves between ASE design operations in problem and solution space (left) and aggregated to ASE (right), obtained from the ideation and concept review activities
Table 11 Averaged proportions of sequences of three consecutive design operations obtained from the ideation and concept review activities

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martinec, T., Škec, S., Horvat, N. et al. A state-transition model of team conceptual design activity. Res Eng Design 30, 103–132 (2019). https://doi.org/10.1007/s00163-018-00305-1

Download citation

Keywords

  • Design process
  • Conceptual design activity
  • Teamwork
  • State-transition model
  • Ideation
  • Concept review