Skip to main content
Log in

Wavy ground effects on the stability of cylinder wakes

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The stability of the flow past a circular cylinder in the presence of a wavy ground is investigated numerically in this paper. The wavy ground consists of two complete waves with a wavelength of 4D and an amplitude of 0.5D, where D is the cylinder diameter. The vertical distance between the cylinder and the ground is varied, and four different cases are considered. The stability analysis shows that the critical Reynolds number increases for cases close to the ground when compared to the flow past a cylinder away from the ground. The maximum critical Reynolds number is obtained when the cylinder is located in front of the waves. The wavy ground adds layers of clockwise (negative) vorticity due to flow separation from the wave peak, to the oscillating Kármán vortex. This negative vorticity from the wave peak also cancels part of the positive (counterclockwise) vorticity shed from the bottom half of the cylinder. In addition, the negative vorticity from the wave peak strengthens the clockwise (negative) vorticity shed from the top half of the cylinder. These interactions combined with the ground effect skewed the flow away from the ground. The base flow is skewed upward for all the near-ground cases. However, this skew is larger when the cylinder is located over the wavy ground. The vortex shedding frequency is also altered due to the presence of the waves. The main eigenmode found for plain flow past a cylinder appears to become suppressed for cases closer to the ground. Limited particle image velocimetry experiments are reported which corroborate the finding from the stability analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data set can be made available upon request.

References

  1. Yang, B., Gao, F.-P., Wu, Y.-X., Li, D.-H.: Experimental study on vortex-induced vibrations of submarine pipeline near seabed boundary in ocean currents. China Ocean Eng. 20, 113 (2006)

    Google Scholar 

  2. Yang, B., Gao, F.-P., Jeng, D.-S., Wu, Y.-X.: Experimental study of vortex-induced vibrations of a pipeline near an erodible sandy seabed. Ocean Eng. 35, 301–309 (2008)

    Article  Google Scholar 

  3. Carrasco-Pena, A., Omer, M., Masa, B., Shepard, Z., Scofield, T., Bhattacharya, S., Orlovskaya, N., Collins, B.E., Yarmolenko, S.N., Sankar, J., et al.: Mechanical properties, spectral vibrational response, and flow-field analysis of the aragonite skeleton of the staghorn coral (acropora cervicornis). Coral Reefs 39, 1779–1792 (2020)

    Article  Google Scholar 

  4. Monismith, S.G.: Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech. 39, 37–55 (2007)

    Article  ADS  Google Scholar 

  5. Hanke, W., Witte, M., Miersch, L., Brede, M., Oeffner, J., Michael, M., Hanke, F., Leder, A., Dehnhardt, G.: Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J. Exp. Biol. 213, 2665–2672 (2010)

    Article  PubMed  Google Scholar 

  6. Williamson, C.H.: Vortex dynamics in the cylinder wake. Ann. Rev. Fluid Mech. 28, 477–539 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  7. Lekkala, M.R., Latheef, M., Jung, J.H., Coraddu, A., Zhu, H., Srinil, N., Lee, B.-H., et al.: Recent advances in understanding the flow over bluff bodies with different geometries at moderate Reynolds numbers. Ocean Eng. 261, 111611 (2022)

    Article  Google Scholar 

  8. Chen, W.-L., Huang, Y., Chen, C., Yu, H., Gao, D.: Review of active control of circular cylinder flow. Ocean Eng. 258, 111840 (2022)

    Article  Google Scholar 

  9. Bhattacharya, S., Gregory, J.W.: Optimum-wavelength forcing of a bluff body wake. Phys. Fluids 30, 015101 (2018)

    Article  ADS  Google Scholar 

  10. Joshi, K., Bhattacharya, S.: Large-eddy simulation of the effect of distributed plasma forcing on the wake of a circular cylinder. Comput. Fluids 193, 104295 (2019). https://doi.org/10.1016/j.compfluid.2019.104295

    Article  MathSciNet  Google Scholar 

  11. Bhattacharya, S., Gregory, J.W.: The effect of spatially and temporally modulated plasma actuation on cylinder wake. AIAA J. 58, 3808–3818 (2020). https://doi.org/10.2514/1.J059269

    Article  ADS  CAS  Google Scholar 

  12. Bhattacharya, S., Gregory, J.W.: Investigation of the cylinder wake under spanwise periodic forcing with a segmented plasma actuator. Phys. Fluids 27, 014102 (2015). https://doi.org/10.1063/1.4905536

    Article  ADS  CAS  Google Scholar 

  13. Bhattacharya, S., Gregory, J.W.: Effect of Three-Dimensional Plasma Actuation on the Wake of a Circular Cylinder, pp. 958–967. American Institute of Aeronautics and Astronautics Inc., League (2015)

    Google Scholar 

  14. Provansal, M., Mathis, C., Boyer, L.: Bénard-von kármán instability: transient and forced regimes. J. Fluid Mech. 182, 1–22 (1987)

    Article  ADS  CAS  Google Scholar 

  15. Barkley, D.: Linear analysis of the cylinder wake mean flow. EPL (Europhys. Lett.) 75, 750 (2006)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Noack, B.R., Eckelmann, H.: A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297–330 (1994). https://doi.org/10.1017/S0022112094004283

    Article  ADS  Google Scholar 

  17. Yang, X., Zebib, A.: Absolute and convective instability of a cylinder wake. Phys. Fluids Fluid Dyn. 1, 689–696 (1989)

    Article  ADS  Google Scholar 

  18. He, G.-S., Wang, J.-J., Pan, C., Feng, L.-H., Gao, Q., Rinoshika, A.: Vortex dynamics for flow over a circular cylinder in proximity to a wall. J. Fluid Mech. 812, 698–720 (2017)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Sarkar, S., Sarkar, S.: Vortex dynamics of a cylinder wake in proximity to a wall. J. Fluids Struct. 26, 19–40 (2010)

    Article  ADS  Google Scholar 

  20. Lei, C., Cheng, L., Armfield, S., Kavanagh, K.: Vortex shedding suppression for flow over a circular cylinder near a plane boundary. Ocean Eng. 27, 1109–1127 (2000). https://doi.org/10.1016/S0029-8018(99)00033-5

    Article  Google Scholar 

  21. Lei, C., Cheng, L., Kavanagh, K.: Re-examination of the effect of a plane boundary on force and vortex shedding of a circular cylinder. J. Wind Eng. Ind. Aerodyn. 80, 263–286 (1999). https://doi.org/10.1016/S0167-6105(98)00204-9

    Article  Google Scholar 

  22. Kazeminezhad, M., Yeganeh-Bakhtiary, A., Etemad-Shahidi, A.: Numerical investigation of boundary layer effects on vortex shedding frequency and forces acting upon marine pipeline. Appl. Ocean Res. 32, 460–470 (2010). https://doi.org/10.1016/j.apor.2010

    Article  Google Scholar 

  23. He, G., Pan, C., Wang, J.: Dynamics of vortical structures in cylinder/wall interaction with moderate gap ratio. J. Fluids Struct. 43, 100–109 (2013). https://doi.org/10.1016/j.jfluidstructs.2013.09.005

    Article  ADS  Google Scholar 

  24. Prsic, M.A., Ong, M.C., Pettersen, B., Myrhaug, D.: Large eddy simulations of flow around a circular cylinder close to a flat seabed. Mar. Struct. 46, 127–148 (2016)

    Article  Google Scholar 

  25. Tham, D.M.Y., Gurugubelli, P.S., Li, Z., Jaiman, R.K.: Freely vibrating circular cylinder in the vicinity of a stationary wall. J. Fluids Struct. 59, 103–128 (2015)

    Article  ADS  Google Scholar 

  26. Wang, X., Hao, Z., Tan, S.: Vortex-induced vibrations of a neutrally buoyant circular cylinder near a plane wall. J. Fluids Struct. 39, 188–204 (2013)

    Article  ADS  Google Scholar 

  27. Li, Z., Jaiman, R.K., Khoo, B.C.: Coupled dynamics of vortex-induced vibration and stationary wall at low Reynolds number. Phys. Fluids 29, 093601 (2017)

    Article  ADS  Google Scholar 

  28. Tripathi, A.M., Ghosh, S.K., Sarkar, S.: Two dimensional unsteady flow past a square cylinder: influence of proximal plane wall and power-law index. Ocean Eng. 240, 109896 (2021)

    Article  Google Scholar 

  29. Bimbato, A.M., et al.: Influence of the wake interference on the vortex shedding flow around a circular cylinder in ground effect. In: 20th International Congress of Mechanical Engineering, pp. 15–20 (2009)

  30. Huang, W.-X., Sung, H.J.: Vortex shedding from a circular cylinder near a moving wall. J. Fluids Struct. 23, 1064–1076 (2007)

    Article  ADS  Google Scholar 

  31. Wang, R., Liu, X., Zhu, H., Zhou, D., Bao, Y., Xu, H.: Dynamics and stability of the wake behind a circular cylinder in the vicinity of a plane moving wall. Ocean Eng. 242, 110034 (2021). https://doi.org/10.1016/j.oceaneng.2021.110034

    Article  Google Scholar 

  32. Nishino, T.: Dynamics and stability of flow past a circular cylinder in ground effect, Ph.D. thesis. School University of Southampton (2007). https://eprints.soton.ac.uk/49931/

  33. Rao, A., Thompson, M., Leweke, T., Hourigan, K.: The flow past a circular cylinder translating at different heights above a wall. J. Fluids Struct. 41, 9–21 (2013). https://doi.org/10.1016/j.jfluidstructs.2012.08.007. (Special issue on Bluff Body Flows (Blubof2011))

  34. Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev, S., Lombard, J.-E., Ekelschot, D., et al.: Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015)

    Article  ADS  CAS  Google Scholar 

  35. Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics. Numerical Methods and Scientific (2005)

  36. Geuzaine, C., Remacle, J.-F.: Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009)

    Article  MathSciNet  Google Scholar 

  37. Sherwin, S., Karniadakis, G.E.: A triangular spectral element method: Applications to the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 123, 189–229 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  38. Åkervik, E., Brandt, L., Henningson, D.S., Hœpffner, J., Marxen, O., Schlatter, P.: Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18, 068102 (2006)

    Article  ADS  Google Scholar 

  39. Jordi, B.E., Cotter, C.J., Sherwin, S.J.: Encapsulated formulation of the selective frequency damping method. Phys. Fluids 26, 034101 (2014)

    Article  ADS  Google Scholar 

  40. Tritton, D.J.: Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 6, 547–567 (1959). https://doi.org/10.1017/S0022112059000829

    Article  ADS  Google Scholar 

  41. Tabor, M., Klapper, I.: Stretching and alignment in chaotic and turbulent flows. Chaos Solitons Fractals 4, 1031–1055 (1994)

    Article  ADS  Google Scholar 

  42. Zdravkovich, M.M.: Flow Around Circular Cylinders: Volume 1: Fundamentals, vol. 1. Oxford University Press, Oxford (1997)

    Book  Google Scholar 

  43. Williamson, C., Brown, G.: A series in 1/\(\sqrt{r}e\) to represent the Strouhal–Reynolds number relationship of the cylinder wake. J. Fluids Struct. 12, 1073–1085 (1998)

    Article  ADS  Google Scholar 

  44. Graftieaux, L., Michard, M., Grosjean, N.: Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12, 1422 (2001)

    Article  ADS  CAS  Google Scholar 

  45. Camarri, S., Giannetti, F.: Effect of confinement on three-dimensional stability in the wake of a circular cylinder. J. Fluid Mech. 642, 477–487 (2010)

    Article  ADS  Google Scholar 

  46. Zhou, Y., Alam, M.M.: Wake of two interacting circular cylinders: a review. Int. J. Heat Fluid Flow 62, 510–537 (2016)

    Article  Google Scholar 

  47. He, W., Guan, Y., Theofilis, V., Li, L.K.: Stability of low-Reynolds-number separated flow around an airfoil near a wavy ground. AIAA J. 57, 29–34 (2019)

    Article  ADS  Google Scholar 

Download references

Funding

No external funding was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

M.D performed the research, conducted the simulation and stability analysis. M.D and S.B wrote the paper. S.B edited and reviewed the paper. E.F provided guidance during the course of research and checked the results. All authors reviewed the manuscript.

Corresponding author

Correspondence to S. Bhattacharya.

Ethics declarations

Conflict of interest

The authors declare no competing interests..

Ethical approval

Not applicable.

Additional information

Communicated by Vassilis Theofilis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, M., Ferrer, E. & Bhattacharya, S. Wavy ground effects on the stability of cylinder wakes. Theor. Comput. Fluid Dyn. (2024). https://doi.org/10.1007/s00162-024-00687-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00162-024-00687-0

Keywords

Navigation