Skip to main content
Log in

Linear stability analysis of surface waves of liquid jet injected in transverse gas flow with different angles

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A theoretical and experimental study was conducted to investigate the effect of injection angle on surface waves. Linear stability theory was utilized to obtain the analytical relation. In the experimental study, high-speed photography and shadowgraph techniques were used. Image processing codes were developed to extract information from photos. The results obtained from the theoretical relation were validated with the experimental results at different injection angles. In addition, at the injection angle of 90\({^\circ }\), the theoretical results were evaluated with the experimental results of other researchers. This evaluation showed that the theory results were in good agreement with the experimental data. The proper orthogonal decomposition (POD) and the power spectra density (PSD) analysis were also used to investigate the effect of the injection angle on the flow structures. The results obtained from the linear stability were used to determine the maximum waves’ growth rate, and a relation was presented for the breakup length of the liquid jet at different injection angles. The breakup length results were compared with theory and published experimental data. The presented relation is more consistent with experimental data than other theories due to considering the nature of waves. The results showed that the instability of the liquid jet is influenced by three forces: inertial, surface tension, and aerodynamic. Therefore, Rayleigh–Taylor, Kelvin–Helmholtz, Rayleigh–Plateau, and azimuthal instabilities occur in the process. Decreasing the injection angle changes the nature of waves and shifts from Rayleigh–Taylor to Kelvin–Helmholtz. That reduces the wavelength and increases the growth rate of the waves. Axial waves have a significant impact on the physics of the waves and influence parameters. If axial waves are not formed, the growth rate of the waves is independent of the injection angle. An increase in the gas Weber number causes a change in the type of dominant waves and a greater instability of the liquid jet. In contrast, an increase in the liquid Weber number causes an enhancement in the resistance of the liquid jet against the transverse flow without changing the type of the dominant waves. Decreasing the density ratio reduces the effect of Rayleigh–Taylor waves and strengthens the Kelvin–Helmholtz waves. It causes two trends to be observed for the growth rate of waves at low spray angles, while one trend occurs at high spray angles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(\textrm{At}\) :

Atwood number, \(\frac{\rho _{l}-\rho _{g}}{\rho _{l}+\rho _{g}}\)

c :

Constant

\({\hat{e}}\) :

Unit vector

f :

Body force

g :

Gravity acceleration

I :

First kinds modified Bessel function

K :

Second kinds modified Bessel function

k :

Axial wavenumber

L :

Breakup length

m :

Azimuthal wavenumber

p :

Pressure

R :

Radius

t :

Time

V :

Velocity vector

v :

Velocity

\(v^{*}\) :

Air/liquid velocity ratio, \(\frac{v_{g}}{v_{l}}\)

We:

Weber number, \(\frac{\rho v^{2}R}{\sigma }\)

NS :

Local tangential-vertical coordinate axes

\(r,\theta ,z\) :

Reference cylindrical coordinate axes

xz :

Cartesian coordinate axes

\(\beta \) :

Circumferential angle

\(\eta \) :

Interface displacement

\(\mu \) :

Dynamic viscosity

\(\upsilon \) :

Kinematic viscosity

\(\xi \) :

Effective thickness

\(\rho \) :

Density

\(\rho ^{*}\) :

Air/liquid density ratio, \(\frac{\rho _{g}}{\rho _{l}}\)

\(\sigma \) :

Surface tension

\(\varphi \) :

Velocity potential function

\(\psi _{0}\) :

Injection angle

\({\Gamma }\) :

Gamma function

\(\omega \) :

Complex frequency

I :

Imaginary part of complex number

R :

Real part of complex number

l :

Liquid

g :

Gas

0:

Initial point

opt:

Optimum point

ref:

Reference point

ij :

Tensor index

\(\infty \) :

Free stream condition

‘:

Perturbation quantity

\(*\) :

Dimensionless quantity

References

  1. Broumand, M., Birouk, M.: Liquid jet in a subsonic gaseous crossflow: recent progress and remaining challenges. Prog. Energy Combust. Sci. 57, 1–29 (2016). https://doi.org/10.2514/1.J054440

    Article  Google Scholar 

  2. Kampa, M., Castanas, E.: Human health effects of air pollution. Environ. Pollut. 151, 362–367 (2008). https://doi.org/10.1016/j.envpol.2007.06.012

    Article  Google Scholar 

  3. Wu, P.-K., Kirkendall, K.A., Fuller, R.P., Nejad, A.S.: Breakup processes of liquid jets in subsonic crossflows. J. Propuls. Power 13, 64–73 (1997). https://doi.org/10.2514/2.5151

    Article  Google Scholar 

  4. Mazallon, J., Dai, Z., Faeth, G.M.: Primary breakup of nonturbulent round liquid jets in gas crossflows. At. Sprays 9, 3 (1999). https://doi.org/10.1615/AtomizSpr.v9.i3.40

    Article  Google Scholar 

  5. Sallam, K.A., Aalburg, C., Faeth, G.M.: Breakup of round nonturbulent liquid jets in gaseous crossflow. AIAA J. 42, 2529–2540 (2004). https://doi.org/10.2514/1.3749

    Article  Google Scholar 

  6. Ng, C.-L., Sankarakrishnan, R., Sallam, K.A.: Bag breakup of nonturbulent liquid jets in crossflow. Int. J. Multiph. Flow 34, 241–259 (2008). https://doi.org/10.1016/j.ijmultiphaseflow.2007.07.005

    Article  Google Scholar 

  7. Behzad, M., Ashgriz, N., Karney, B.W.: Surface breakup of a non-turbulent liquid jet injected into a high pressure gaseous crossflow. Int. J. Multiph. Flow 80, 100–117 (2016). https://doi.org/10.1016/j.ijmultiphaseflow.2015.11.007

    Article  MathSciNet  Google Scholar 

  8. Li, X., Soteriou, M.C.: High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers. Phys. Fluids 28, 82101 (2016). https://doi.org/10.1063/1.4959290

    Article  Google Scholar 

  9. Li, X., Gao, H., Soteriou, M.C.: Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations. Phys. Fluids 29, 82103 (2017). https://doi.org/10.1063/1.4996178

    Article  Google Scholar 

  10. Li, X., Soteriou, M.C.: Detailed numerical simulation of liquid jet atomization in crossflow of increasing density. Int. J. Multiph. Flow 104, 214–232 (2018). https://doi.org/10.1016/j.ijmultiphaseflow.2018.02.016

    Article  MathSciNet  Google Scholar 

  11. Lee, K., Aalburg, C., Diez, F.J., Faeth, G.M., Sallam, K.A.: Primary breakup of turbulent round liquid jets in uniform crossflows. AIAA J. 45, 1907–1916 (2007). https://doi.org/10.2514/1.19397

    Article  Google Scholar 

  12. Ragucci, R., Cavaliere, A., Bellofiore, A.: Trajectory and momentum coherence breakdown of a liquid jet in high-density air cross-flow. At. Sprays 17, 47–70 (2007). https://doi.org/10.1615/AtomizSpr.v17.i1.20

    Article  Google Scholar 

  13. Eslamian, M., Amighi, A., Ashgriz, N.: Atomization of liquid jet in high-pressure and high-temperature subsonic crossflow. AIAA J. 52, 1374–1385 (2014). https://doi.org/10.2514/1.J052548

    Article  Google Scholar 

  14. Song, J., Cary Cain, C., Guen Lee, J.: Liquid jets in subsonic air crossflow at elevated pressure. J. Eng. Gas Turbines Power. 137, 041502 (2015). https://doi.org/10.1115/1.4028565

    Article  Google Scholar 

  15. Broumand, M., Birouk, M., et al.: Liquid jet primary breakup in a turbulent cross-airflow at low Weber number. J. Fluid Mech. 879, 775–792 (2019). https://doi.org/10.1016/j.pecs.2016.08.003

    Article  MathSciNet  Google Scholar 

  16. Wang, F., Fang, T.: Liquid jet breakup for non-circular orifices under low pressures. Int. J. Multiph. Flow 72, 248–262 (2015). https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.015

    Article  Google Scholar 

  17. Rajesh, K.R., Sakthikumar, R., Sivakumar, D.: Interfacial oscillation of liquid jets discharging from non-circular orifices. Int. J. Multiph. Flow 87, 1–8 (2016). https://doi.org/10.1016/j.ijmultiphaseflow.2016.08.006

    Article  Google Scholar 

  18. Prakash, R.S., Sinha, A., Tomar, G., Ravikrishna, R.V.: Liquid jet in crossflow-effect of liquid entry conditions. Exp. Therm. Fluid Sci. 93, 45–56 (2018). https://doi.org/10.1016/j.expthermflusci.2017.12.012

    Article  Google Scholar 

  19. Sinha, A.: Surface waves on liquid jet in crossflow: effect of injector geometry. AIAA J. 57, 4577–4582 (2019). https://doi.org/10.2514/1.J058383

    Article  Google Scholar 

  20. Tadjfar, M., Jaberi, A.: Effects of aspect ratio on the flow development of rectangular liquid jets issued into stagnant air. Int. J. Multiph. Flow 115, 144–157 (2019). https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.011

    Article  Google Scholar 

  21. Jaberi, A., Tadjfar, M.: Wavelength and frequency of axis-switching phenomenon formed over rectangular and elliptical liquid jets. Int. J. Multiph. Flow 119, 144–154 (2019). https://doi.org/10.1016/j.ijmultiphaseflow.2019.07.006

    Article  Google Scholar 

  22. Jaberi, A., Tadjfar, M.: Visualization of two-dimensional liquid sheets issued into subsonic gaseous crossflow. J. Vis. 23, 605–624 (2020). https://doi.org/10.1007/s12650-020-00655-w

    Article  Google Scholar 

  23. Jaberi, A., Tadjfar, M.: Two-dimensional liquid sheet in transverse subsonic airflow. Exp. Therm. Fluid Sci. 123, 110326 (2021). https://doi.org/10.1016/j.expthermflusci.2020.110326

    Article  Google Scholar 

  24. Boeck, T., Li, J., López-Pagés, E., Yecko, P., Zaleski, S.: Ligament formation in sheared liquid–gas layers. Theor. Comput. Fluid Dyn. 21, 59–76 (2007). https://doi.org/10.1007/s00162-006-0022-1

    Article  Google Scholar 

  25. Khosravi, M., Javan, M.: Three-dimensional features of the lateral thermal plume discharge in the deep cross-flow using dynamic adaptive mesh refinement. Theor. Comput. Fluid Dyn. 36, 405–422 (2022). https://doi.org/10.1007/s00162-022-00612-3

    Article  MathSciNet  Google Scholar 

  26. Amini, G.: Linear stability analysis of a liquid jet in a weak crossflow. Phys. Fluids 30, 84105 (2018). https://doi.org/10.1063/1.5043589

    Article  Google Scholar 

  27. Lee, H., Park, D.: Linear stability analysis of compressible vortex flows considering viscous effects. Theor. Comput. Fluid Dyn. 36, 799–820 (2022). https://doi.org/10.1007/s00162-022-00610-5

    Article  MathSciNet  Google Scholar 

  28. Sterling, A.M., Sleicher, C.A.: The instability of capillary jets. J. Fluid Mech. 68, 477–495 (1975). https://doi.org/10.1017/S0022112075001772

    Article  Google Scholar 

  29. Lin, S.P., Lian, Z.W.: Mechanisms of the breakup of liquid jets. AIAA J. 28, 120–126 (1990). https://doi.org/10.2514/3.10361

    Article  Google Scholar 

  30. Funada, T., Joseph, D.D.: Viscous potential flow analysis of capillary instability. Int. J. Multiph. Flow 28, 1459–1478 (2002). https://doi.org/10.1016/S0301-9322(02)00035-6

    Article  Google Scholar 

  31. Liu, Z., Liu, Z.: Linear analysis of three-dimensional instability of non-Newtonian liquid jets. J. Fluid Mech. 559, 451–459 (2006). https://doi.org/10.1017/S0022112006000413

    Article  MathSciNet  Google Scholar 

  32. Yang, L., Liu, Y., Fu, Q.: Linear stability analysis of an electrified viscoelastic liquid jet. J. Fluids Eng. 134, 071303 (2012). https://doi.org/10.1115/1.4006913

    Article  Google Scholar 

  33. Boronin, S.A., Healey, J.J., Sazhin, S.S.: Non-modal stability of round viscous jets. J. Fluid Mech. 716, 96–119 (2013). https://doi.org/10.1017/jfm.2012.521

    Article  MathSciNet  Google Scholar 

  34. Pillai, D.S., Picardo, J.R., Pushpavanam, S.: Shifting and breakup instabilities of squeezed elliptic jets. Int. J. Multiph. Flow 67, 189–199 (2014). https://doi.org/10.1016/j.ijmultiphaseflow.2014.09.004

    Article  MathSciNet  Google Scholar 

  35. Coelho, S.L.V., Hunt, J.C.R.: The dynamics of the near field of strong jets in crossflows. J. Fluid Mech. 200, 95–120 (1989). https://doi.org/10.1017/S0022112089000583

    Article  MathSciNet  Google Scholar 

  36. Higuera, F.J., Martinez, M.: An incompressible jet in a weak crossflow. J. Fluid Mech. 249, 73–97 (1993). https://doi.org/10.1017/S0022112093001089

    Article  Google Scholar 

  37. Alves, L.S.D.B., Kelly, R.E., Karagozian, A.R.: Local stability analysis of an inviscid transverse jet. J. Fluid Mech. 581, 401–418 (2007). https://doi.org/10.1017/S0022112007005873

    Article  MathSciNet  Google Scholar 

  38. Bagheri, S., Schlatter, P., Schmid, P.J., Henningson, D.S.: Global stability of a jet in crossflow. J. Fluid Mech. 624, 33–44 (2009). https://doi.org/10.1017/S0022112009006053

    Article  MathSciNet  Google Scholar 

  39. Regan, M.A., Mahesh, K.: Global linear stability analysis of jets in cross-flow. J. Fluid Mech. 828, 812–836 (2017). https://doi.org/10.1017/jfm.2017.489

    Article  MathSciNet  Google Scholar 

  40. Yang, H.Q.: Asymmetric instability of a liquid jet. Phys. Fluids A Fluid Dyn. 4, 681–689 (1992). https://doi.org/10.1063/1.858287

    Article  Google Scholar 

  41. Avital, E.: Asymmetric instability of a viscid capillary jet in an inviscid media. Phys. Fluids 7, 1162–1164 (1995). https://doi.org/10.1063/1.868558

    Article  Google Scholar 

  42. Brenn, G., Liu, Z., Durst, F.: Three-dimensional temporal instability of non-Newtonian liquid sheets. At. Sprays 11, 1 (2001). https://doi.org/10.1615/AtomizSpr.v11.i1.40

    Article  Google Scholar 

  43. Wang, S., Huang, Y., Liu, Z.L.: Theoretical analysis of surface waves on a round liquid jet in a gaseous crossflow. At. Sprays 24, 1 (2014). https://doi.org/10.1615/AtomizSpr.2013008203

    Article  Google Scholar 

  44. Behzad, M., Ashgriz, N., Mashayek, A.: Azimuthal shear instability of a liquid jet injected into a gaseous cross-flow. J. Fluid Mech. 767, 146–172 (2015). https://doi.org/10.1017/jfm.2015.36

    Article  MathSciNet  Google Scholar 

  45. Guo, J.-P., Wang, Y.-B., Bai, F.-Q., Du, Q.: Unstable breakup of a power-law liquid fuel jet in the presence of a gas crossflow. Fuel 263, 116606 (2020). https://doi.org/10.1016/j.fuel.2019.116606

    Article  Google Scholar 

  46. Liu, L., Fu, Q., Yang, L.: Linear stability analysis of liquid jet exposed to subsonic crossflow with heat and mass transfer. Phys. Fluids 33, 34111 (2021). https://doi.org/10.1063/5.0040538

    Article  Google Scholar 

  47. Liu, L.-H., Fu, Q.-F., Yang, L.-J.: Linear stability analysis of liquid jets exposed to subsonic crossflow with aluminum particles and surfactant. At. Sprays 31, 1 (2021). https://doi.org/10.1615/AtomizSpr.2020035501

    Article  Google Scholar 

  48. Broumand, M., Birouk, M.: Two-zone model for predicting the trajectory of liquid jet in gaseous crossflow. AIAA J. 54, 1499–1511 (2016). https://doi.org/10.1017/jfm.2019.704

    Article  Google Scholar 

  49. Kasmaiee, S., Tadjfar, M.: Influence of injection angle on liquid jet in crossflow. Int. J. Multiph. Flow 153, 104128 (2022). https://doi.org/10.1016/j.ijmultiphaseflow.2022.104128

    Article  Google Scholar 

  50. Kasmaiee, S., Tadjfar, M.: Experimental study of the injection angle impact on the column waves: wavelength, frequency and drop size. Exp. Therm. Fluid Sci. (2023). https://doi.org/10.1016/j.expthermflusci.2023.110989

    Article  Google Scholar 

  51. Bradley, D., Roth, G.: Adaptive thresholding using the integral image. J. Graph. Tools 12, 13–21 (2007). https://doi.org/10.1080/2151237X.2007.10129236

    Article  Google Scholar 

  52. Vincent, O.R., Folorunso, O., et al.: A descriptive algorithm for sobel image edge detection. In: Proceedings of Informing Science IT Education Conference (InSITE), pp. 97–107 (2009). https://doi.org/10.28945/3351

  53. Vadivukkarasan, M., Panchagnula, M.V.: Helical modes in combined Rayleigh–Taylor and Kelvin–Helmholtz instability of a cylindrical interface. Int. J. Spray Combust. Dyn. 8, 219–234 (2016). https://doi.org/10.1177/1756827716642159

    Article  Google Scholar 

  54. Vadivukkarasan, M., Panchagnula, M.V.: Combined Rayleigh–Taylor and Kelvin–Helmholtz instabilities on an annular liquid sheet. J. Fluid Mech. 812, 152–177 (2017). https://doi.org/10.1017/jfm.2016.784

    Article  MathSciNet  Google Scholar 

  55. Karagozian, A.R.: Transverse jets and their control. Prog. Energy Combust. Sci. 36, 531–553 (2010). https://doi.org/10.1016/j.pecs.2010.01.001

    Article  Google Scholar 

  56. Sedarsky, D., Paciaroni, M., Berrocal, E., Petterson, P., Zelina, J., Gord, J., Linne, M.: Model validation image data for breakup of a liquid jet in crossflow: part I. Exp. Fluids 49, 391–408 (2010). https://doi.org/10.1007/s00348-009-0807-2

    Article  Google Scholar 

  57. Rayleigh, R.: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 1, 170–177 (1882). https://doi.org/10.1112/plms/s1-14.1.170

    Article  MathSciNet  Google Scholar 

  58. Clark, C.J., Dombrowski, N.: Aerodynamic instability and disintegration of inviscid liquid sheets. Proc. R. Soc. Lond. A. Math. Phys. Sci. 329, 467–478 (1972). https://doi.org/10.1098/rspa.1972.0124

    Article  Google Scholar 

  59. Fu, Q., Yang, L., Qu, Y., Gu, B.: Linear stability analysis of a conical liquid sheet. J. Propuls. Power 26, 955–968 (2010). https://doi.org/10.2514/1.48346

    Article  Google Scholar 

  60. Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477–508 (2020). https://doi.org/10.1146/annurev-fluid-010719-060214

    Article  MathSciNet  Google Scholar 

  61. Nobach, H., Tropea, C., Cordier, L., Bonnet, J.P., Delville, J., Lewalle, J., Farge, M., Schneider, K., Adrian, R.: Review of some fundamentals of data processing. In: Springer Handbooks. pp. 1337–1398. Springer (2007). https://doi.org/10.1007/978-3-540-30299-5_22

  62. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9780511919701

    Book  Google Scholar 

  63. Arienti, M., Soteriou, M.C.: Time-resolved proper orthogonal decomposition of liquid jet dynamics. Phys. Fluids 21, 112104 (2009). https://doi.org/10.1063/1.3263165

    Article  Google Scholar 

  64. Herrmann, M., Arienti, M., Soteriou, M.: The impact of density ratio on the liquid core dynamics of a turbulent liquid jet injected into a crossflow. J. Eng. Gas Turbines Power (2011). https://doi.org/10.1115/1.4002273

    Article  Google Scholar 

  65. Charalampous, G., Hardalupas, Y.: Application of proper orthogonal decomposition to the morphological analysis of confined co-axial jets of immiscible liquids with comparable densities. Phys. Fluids 26, 113301 (2014). https://doi.org/10.1063/1.4900944

    Article  Google Scholar 

  66. Kang, Z., Li, X., Mao, X.: Experimental investigation on the surface wave characteristics of conical liquid film. Acta Astronaut. 149, 15–24 (2018). https://doi.org/10.1016/j.actaastro.2018.05.030

    Article  Google Scholar 

  67. Xu, L., Xia, Z., Zhang, M., Du, Q., Bai, F.: Experimental research on breakup of 2D power law liquid film. Chin. J. Chem. Eng. 23, 1429–1439 (2015). https://doi.org/10.1016/j.cjche.2015.03.011

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SK, MT, SK and GA. The first draft of the manuscript was written by SK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Si. Kasmaiee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This paper does not use experimental animals, and human participants. This paper was done by the authors, and no animals, and human participants than the authors were involved in it.

Availability of data and materials

Data will be made available on request. If someone wants to request the data from this study, they can contact corresponding author.

Additional information

Communicated by Ardeshir Hanifi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasmaiee, S., Tadjfar, M., Kasmaiee, S. et al. Linear stability analysis of surface waves of liquid jet injected in transverse gas flow with different angles. Theor. Comput. Fluid Dyn. 38, 107–138 (2024). https://doi.org/10.1007/s00162-024-00685-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-024-00685-2

Keywords

Navigation