Skip to main content
Log in

Numerical study on hydrodynamics of two types of unsteady bubbles in shear-thinning liquids

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A volume of fluid method combined with an adaptive grid method was used to study the influence of Galilei (Ga) and Eötvös (Eo) numbers and characteristic parameters (such as rheological index (n) and characteristic time (\(\lambda \))) of shear-thinning liquids on the hydrodynamics of two types of unsteady bubbles. One is the bubble with central breakup behaviors, of which the rise trajectory is a straight line and the shape is symmetrical; however, the shape and centroid velocity cannot reach a steady state. Bubble shape becomes annular after radial expansion, and the centroid velocity has two peaks. The other is the unsteady bubble, of which the rise trajectory is zigzag, but both the shape and rise velocity cannot reach a steady state. The shape of this unstable bubble is flat, which causes periodic vortex shedding at the tail of a bubble. Thus, bubble rise velocity cannot reach a steady state. When the influence of viscous force is relatively weak and Eo is in the range of 50–55, a bubble shows central breakup behaviors. When Eo is low (Eo\(<10\)), effective Morton numbers (Mo\(^{\mathrm{eff}}\)) decrease to the magnitude of \(10^{-7}\) and effective Reynolds numbers meet the condition of Re\(^{\mathrm{eff}}\ge 125.2\), a bubble shows the second type of unsteady characteristics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Wang, X., Sun, J., Zhao, J., Chen, W.: Experimental detection of bubble-wall interactions in a vertical gas-liquid flow. Chin. J. Chem. Eng. 07, 838–847 (2017). https://doi.org/10.1016/j.cjche.2016.11.013

    Article  Google Scholar 

  2. Li, L., Zhao, Y., Lian, W., Han, C., Zhang, Q., Huang, W.: Review on the effect of heat exchanger tubes on flow behavior and heat/mass transfer of the bubble/slurry reactors. Chin. J. Chem. Eng. 35, 44–61 (2021). https://doi.org/10.1016/j.cjche.2021.03.017

    Article  Google Scholar 

  3. Mahdi Lakhdissi, E., Fallahi, A., Guy, C., Chaouki, J.: Effect of solid particles on the volumetric gas liquid mass transfer coefficient in slurry bubble column reactors. Chem. Eng. Sci. (2010). https://doi.org/10.1016/j.ces.2020.115912sss

    Article  Google Scholar 

  4. Zarei, A., Seddighi, S., Elahi, S., Örlü, R.: Experimental investigation of the heat transfer from the helical coil heat exchanger using bubble injection for cold thermal energy storage system. Appl. Therm. Eng. (2022). https://doi.org/10.1016/j.applthermaleng.2021.117559

    Article  Google Scholar 

  5. Tripathi, M.K., Sahu, K.C., Govindarajan, R.: Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 6, 1–9 (2015). https://doi.org/10.1038/ncomms7268

    Article  Google Scholar 

  6. Islam, M.T., Ganesan, P.B., Cheng, J., Uddin, M.S.: Single bubble rising behaviors in Newtonian and non-Newtonian fluids with validation of empirical correlations: a computational fluid dynamics study. Eng. Rep. (2020). https://doi.org/10.1002/eng2.12100

    Article  Google Scholar 

  7. Gumulya, M., Joshi, J.B., Utikar, R.P., Evans, G.M., Pareek, V.: Bubble in viscous liquids: time dependent behavior and wake characteristic. Chem. Eng. Sci. 144, 298–309 (2016). https://doi.org/10.1016/j.ces.2016.01.051

    Article  Google Scholar 

  8. Premlata, A.R., Tripathi, M.K., Karri, B., Sahu, K.C.: Dynamic of an air bubble rising in a non-Newtonian liquid in the axisymmetric regime. J. Non-Newton. Fluid Mech. 239, 53–61 (2017). https://doi.org/10.1016/j.jnnfm.2016.12.003

    Article  MathSciNet  Google Scholar 

  9. Li, S.B., Yan, Z., Li, R.D., Wang, L., Luan, J.D.: Numerical simulation of single bubble rising in shear-thinning fluids by level set method. J. Cent. South Univ. 23, 1000–1006 (2016). https://doi.org/10.1007/s11771-016-3148-3

    Article  Google Scholar 

  10. Zhang, L., Yang, C., Mao, Z.S.: Numerical simulation of a bubble rising in shear-thinning fluid. J. Non-Newton. Fluid Mech. 165, 555–567 (2010). https://doi.org/10.1016/j.jnnfm.2010.02.012

    Article  MATH  Google Scholar 

  11. Lu, M.J., Pang, M.J., Chao, J.W.: Distribution regularity of dynamic viscosity blind region behind the bubble in shear-thinning fluids under different gravity levels. Microgravity Sci. Technol. 31, 139–150 (2019). https://doi.org/10.1007/s12217-019-9673-6

    Article  Google Scholar 

  12. Pang, M.J., Lu, M.J.: Numerical study on dynamics of single bubble rising in shear-thinning power-law fluid in different gravity environment. Vacuum 153, 101–111 (2018). https://doi.org/10.1016/j.vacuum.2018.04.011

    Article  Google Scholar 

  13. Bhaga, D., Weber, M.E.: Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid Mech. 105, 61–85 (1981). https://doi.org/10.1017/S002211208100311X

  14. Oshaghi, M.R., Shahsavari, M., Afshin, H., Firoozabadi, B.: Experimental investigation of the bubble motion and its ascension in a quiescent viscous liquid. Exp. Therm. Fluid Sci. 103, 274–285 (2019). https://doi.org/10.1016/j.expthermflusci.2019.01.014

  15. Sharaf, D.M., Premlata, A.R., Tripathi, M.K., Badarinath, K., Chandra, S.K.: Shapes and paths of an air bubble rising in quiescent liquids. Phys. Fluids 29, 122104 (2017). https://doi.org/10.1063/1.5006726

    Article  Google Scholar 

  16. Ohta, M., Imura, T., Yoshid, Y., Sussman, M.: A computational study of the effect of initial bubble conditions on the motion of a gas bubble rising in viscous liquids. Int. J. Multiph. Flow 31, 223–237 (2005). https://doi.org/10.1016/j.ijmultiphaseflow.2004.12.001

    Article  MATH  Google Scholar 

  17. Saffman, P.G.: On the rise of small air bubbles in water. J. Fluid Mech. 1, 249–275 (1956). https://doi.org/10.1017/S0022112056000159

    Article  MATH  Google Scholar 

  18. Wu, M.M., Gharib, M.: Experimental studies on the shape and path of small air bubbles rising in clean water. Phys. Fluids 14, L49–L52 (2002). https://doi.org/10.1063/1.1485767

    Article  MATH  Google Scholar 

  19. Liu, L., Yan, H.J., Zhao, G.J.: Experimental studies on the shape and motion of air bubbles in viscous liquids. Exp. Therm. Fluid Sci. 62, 109–121 (2015). https://doi.org/10.1016/j.expthermflusci.2014.11.018

    Article  Google Scholar 

  20. Sunol, F., Cinca, R.G.: Effects of gravity level on bubble formation and rise in low-viscosity liquids. Phys. Rev. E 91, 053009 (2015). https://doi.org/10.1103/PhysRevE.91.053009

    Article  Google Scholar 

  21. Xu, X.F., Zhang, J., Liu, F.X., Wang, X.J., Wei, W.: Rising behavior of single bubble in infinite stagnant non-Newtonian liquids. Int. J. Multiph. Flow 95, 84–90 (2017). https://doi.org/10.1016/j.ijmultiphaseflow.2017.05.009

    Article  Google Scholar 

  22. Ohta, M., Yoshida, Y., Sussman, M.: A computational study of the dynamic motion of a bubble rising in Carreau model fluids. Fluid Dyn. Res. 42, 025501 (2010). https://doi.org/10.1088/0169-5983/42/2/025501

    Article  MathSciNet  MATH  Google Scholar 

  23. Premlata, A.R., Tripathi, M.K., Karri, B., Suha, K.C.: Numerical and experimental investigations of an air bubble rising in a Carreau-Yasuda shear-thinning liquid. Phys. Fluids 29, 033103 (2017). https://doi.org/10.1063/1.4979136

    Article  Google Scholar 

  24. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  25. Premlata, A.R., Tripathi, M.K., Sahu, K.C.: Dynamics of rising bubble inside a viscosity-stratified medium. Phys. Fluids 27, 072105 (2015). https://doi.org/10.1063/1.4927521

    Article  Google Scholar 

  26. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992). https://doi.org/10.1016/0021-9991(92)90240-Y

    Article  MathSciNet  MATH  Google Scholar 

  27. Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics, pp. 273–285. Academic Press, New York (1982)

    Google Scholar 

  28. Bird, P.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids. A Wiley-Interscience Publication, Canada (1987)

    Google Scholar 

  29. Raju, K.V.S.N., Krishna, D., Devi, G.R., Reddy, P.J., Yaseen, M.: Assessment of applicability of carreau, ellis, and cross models to the viscosity data of resin solutions. J. Appl. Polym. Sci. 48, 2101–2112 (1993). https://doi.org/10.1002/app.1993.070481205

    Article  Google Scholar 

  30. Amirnia, S., De Bruyn, J.R., Bergougnou, M.A., Margaritis, A.: Continuous rise velocity of air bubbles in non-Newtonian biopolymer solutions. Chem. Eng. Sci. 94, 60–68 (2013)

    Article  Google Scholar 

  31. Hassan, M., Issakhov, A., Khan, U.D., Assad, M.E.H., Hani, E.H.B., Gorji, M.R., Nadeem, S., Khan, S.U.D.: The effects of zero and high shear rates viscosities on the transportation of heat and mass in boundary layer regions: A non-Newtonian fluid with Carreau model. J. Mol. Liq. 317, 113991 (2020). https://doi.org/10.1016/j.molliq.2020.113991

    Article  Google Scholar 

  32. Ohta, M., Furukawa, T., Yoshida, Y., Sussman, M.: A three-dimensional numerical study on the dynamics and deformation of a bubble rising in a hybrid Carreau and FENE-CR modeled polymeric liquid. J. Non-Newton. Fluid Mech. 265, 66–78 (2019). https://doi.org/10.1016/j.jnnfm.2018.12.012

    Article  MathSciNet  Google Scholar 

  33. Zhang, L., Yang, C., Mao, Z.S.: An empirical correlation of drag coefficient for a single bubble rising in Non-Newtonian liquids. Ind. Eng. Chem. Res. 47, 9767–9772 (2008). https://doi.org/10.1021/ie8010319

    Article  Google Scholar 

  34. Li, S.B., Ma, Y.G., Fu, T.T., Zhu, C.Y., Li, H.Z.: The viscosity distribution around a rising bubble in shear-thinning non-Newtonian fluids. Braz. J. Chem. Eng. 29, 265–274 (2012). https://doi.org/10.1590/S0104-66322012000200007

    Article  Google Scholar 

  35. López-Herrera, J.M., Popinet, S., Castrejón-Pita, A.A.: An adaptive solver for viscoelastic incompressible two-phase problems applied to the study of the splashing of weakly viscoelastic droplets. J. Non-Newton. Fluid Mech. 264, 144–158 (2019). https://doi.org/10.1016/j.jnnfm.2018.10.012

    Article  MathSciNet  Google Scholar 

  36. Issa, R.I.: Solution of implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys. 62, 40–65 (1986). https://doi.org/10.1016/0021-9991(86)90099-9

    Article  MathSciNet  MATH  Google Scholar 

  37. Hu, B., Pang, M.J.: Numerical study on the influence of liquid viscosity ratio on the hydrodynamics of a single bubble in shear-thinning liquid. Appl. Math. Model. 103, 122–140 (2022). https://doi.org/10.1016/j.apm.2021.10.009

    Article  MathSciNet  Google Scholar 

  38. Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of polymeric liquids. In: Vol. 1 Fluid Mechanics. A Wiley– Interscience Publication John, Wiley and Sons Inc, Hoboken, New Jersey (1987)

    Google Scholar 

  39. Bonometti, T., Magnaudet, J.: Transition from spherical cap to toroidal bubbles. Phys. Fluids 18, 052102 (2006). https://doi.org/10.1063/1.2196451

    Article  Google Scholar 

  40. Zhang, A.M., Liu, Y.L.: Improve three-dimensional bubble dynamics model based on boundary element mehod. J. Comput. Phys. 294, 208–223 (2015). https://doi.org/10.1016/j.jcp.2015.03.049

    Article  MathSciNet  Google Scholar 

  41. Walters, J.K., Davidson, J.F.: The initial motion of a gas bubble formed in an inviscid liquid. Part 2. The three–dimensional bubble and the toroidal bubble. J. Fluid Mech. 17, 321–336 (1963). https://doi.org/10.1017/S0022112063001373

    Article  MATH  Google Scholar 

  42. Cao, Y.W., Juan, R.M.: Numerical study of the central breakup behaviors of a large bubble rising in quiescent liquid. Chem. Eng. Sci. 225, 115804 (2020). https://doi.org/10.1016/j.ces.2020.115804

    Article  Google Scholar 

  43. Cao, Y.W., Juan, R.M.: Numerical investigation of central breakup of large bubble induced by liquid jet. Phys. Fluids 32, 033302 (2020). https://doi.org/10.1063/1.5144975

    Article  Google Scholar 

  44. Veldhuis, C., Biesheuvel, A., Van, W.L.: Shape oscillations on bubbles rising in clean and in tap water. Phys. Fluids 20, 040705 (2008). https://doi.org/10.1063/1.2911042

    Article  MATH  Google Scholar 

  45. Zhang, J., Ni, M.J.: What happens to the vortex structures when the rising bubble transits from zigzag to spiral? J. Fluid Mech. 828, 353–373 (2017). https://doi.org/10.1017/jfm.2017.514

    Article  MathSciNet  MATH  Google Scholar 

  46. De Vries, A.W.G., Biesheuvel, A., Van, W.L.: Notes on the path and wake of a gas bubble rising in pure water. Int. J. Multiph. Flow 28, 1823–1835 (2002). https://doi.org/10.1016/S0301-9322(02)00036-8

    Article  MATH  Google Scholar 

  47. Smolianski, A., Haario, H., Luukka, P.: Vortex shedding behind a rising bubble and two-bubble coalescence: a numerical approach. Appl. Math. Model. 29, 615–632 (2005). https://doi.org/10.1016/j.apm.2004.09.017

    Article  MATH  Google Scholar 

  48. Zenit, R., Magnaudet, J.: Measurements of the streamwise vorticity in the wake of an oscillating bubble. Int. J. Multiph. Flow 35, 195–203 (2009). https://doi.org/10.1016/j.ijmultiphaseflow.2008.10.007

    Article  Google Scholar 

  49. Gaudlitz, D., Adams, N.A.: Numerical investigation of rising bubble wake and shape variations. Phys. Fluids 21, 122102 (2009). https://doi.org/10.1063/1.3271146

    Article  MATH  Google Scholar 

  50. Cano-Lozano, J.C., Martinez-Bazan, C., Magnaudet, J., Tchoufag, J.: Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability. Phys. Rev. Fluids 1, 053604 (2016). https://doi.org/10.1103/PhysRevFluids.1.053604

    Article  Google Scholar 

  51. Brücker, C.: Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phys. Fluids 11, 1781 (1999). https://doi.org/10.1063/1.870043

    Article  MathSciNet  MATH  Google Scholar 

  52. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China Fund (No. 51376026). We also wish to thank the reviewers and editors for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjun Pang.

Ethics declarations

Conflict of interest

Authors report no conflict of interest and have received no payment in preparation of this manuscript.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Communicated by Song Fu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Pang, M. & Dai, J. Numerical study on hydrodynamics of two types of unsteady bubbles in shear-thinning liquids. Theor. Comput. Fluid Dyn. 36, 769–797 (2022). https://doi.org/10.1007/s00162-022-00619-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-022-00619-w

Keywords

Navigation