Skip to main content
Log in

A novel entropy normalization scheme for characterization of highly compressible flows

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A matrix normalization scheme based on thermodynamic entropy is derived for modal decomposition techniques applied compressible flows. It is demonstrated that this normalization scheme is consistent with the scalar form of entropy. Analysis based in this consistency is performed to demonstrate the theoretical underpinnings of the Chu energy norm, which is the industry standard for compressible modal decompositions. The entropy normalization is shown mathematically to converge to the Chu normalization in the absence of strong temperature gradients. It is then compared to the Chu normalization by analyzing transient growth calculated through a linear stability analysis of a self-similar compressible boundary layer profile. The entropy norm is shown to be more sensitive to temperature fluctuations around the boundary layer than the Chu norm. These observations are further validated in a POD implementation of the entropy normalization, contracted about the conservative and primitive variables. The trends observed in transient growth analysis are observed in full-scale POD. The potential for the entropy normalization to be applied to flows with additional relevant physics, such as as thermal and chemical nonequilibrium, is explored.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. McClinton, C.R., Hunt, P.R.J. L., Ricketts, R.H., Peddie, C.L.: Airbreathing hypersonic technology vision vehicles and development dreams. In: 9th International Space Planes and Hypersonic Systems Technology Conference (1999)

  2. Anderson, J.D.: Hypersonic and High-Temperature Gas Dynamics. AIAA Education Series, 2nd edn. American Institute of Aeronautics and Astronautics, Virginia (2006)

    Book  Google Scholar 

  3. Gaitonde, D.V.: Progress in Shockwave/Boundary Layer Interactions. Progress in Aerospace Sciences, pp. 80–89 (2015)

  4. Gupta, P.A.G.R.N., Shinn, J.L.: Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium. Technical report, NASA. Technical Paper 2867 (1989)

  5. Watts, J.D.: Flight experience with shock impingement and interference heating on the x-15-2 research airplane. Technical report (1974)

  6. Korzun, A.M., Bibb, K.L., Canabal, F., Childs, R.E., Tang, C.Y., Rizk, Y.M., Norman, J.W.V., Tynis, J.A.: Powered Descent Aerodynamics for Low and Mid Lift-to-Drag Human Mars Entry, Descent, and Landing Vehicles (2020)

  7. Sethuraman, Y.P.M., Sinha, K.: Modeling of thermodynamic fluctuations in canonical shock-turbulence interaction. AIAA J. (2020) (Article in advance)

  8. Bhide, P.M., Singh, N., Nompelis, I., Schwartzentruber, T., Candler, G.: Slip effects in near continuum hypersonic flow over canonical geometries. In: AIAA Scitech 2020 Forum (2020)

  9. Egorov, I.V., Novikov, A.V., Fedorov, A.V.: Numerical modeling of the disturbances of the separated flow in a rounded compression corner. J. Fluid Dyn. 41(4), 521 (2006)

    Article  Google Scholar 

  10. Paredes, P., Choudhari, M.M., Li, F., Jewell, J.S., Kimmel, R.L., Marineau, E.C., Grossir, G.: Nose-tip bluntness effects on transition at hypersonic speeds. J. Spacecr. Rocket. 56(2), 369 (2019)

    Article  Google Scholar 

  11. Mason, M.L., Berry, S.A.: Nose-tip bluntness effects on transition at hypersonic speeds. J. Spacecr. Rocket. 53(4), 678 (2016)

    Article  Google Scholar 

  12. Tang, L., Chen, P.C., Liu, D.D., Gao, X.W., Shyy, W., Utturkar, Y., Zhang, B.N.: Proper orthogonal decomposition and response surface method for TPS/RLV structural design and optimization: X-34 case study. In: 43rd AIAA Aerospace Sciences Meeting

  13. Bai, Z., Kaiser, E., Proctor, J.L., Kutz, J.N., Brunton, S.L.: Dynamic mode decomposition for compressive system identification. AIAA J. 58(2), 561 (2020)

    Article  Google Scholar 

  14. Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V., Ukeiley, L.S.: Modal analysis of fluid flows: an overview. AIAA J. 55(12), 4013 (2017)

    Article  Google Scholar 

  15. Towne, A., Schmidt, O.T., Colonius, T.: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821 (2018)

    Article  MathSciNet  Google Scholar 

  16. Joseph, D.D.: Stability of Fluid Motion 1, 1st edn. Springer, Berlin (1976)

    Book  Google Scholar 

  17. Karimi, M.: Compressiblity effects on the Kelvin–Helmhotlz instability and mixing layer flows. Ph.D. thesis (2015)

  18. Chu, B.T.: On the energy transfer to small disturbances in fluid flow (part 1). Acta Mech. 1(3), 215 (1965)

    Article  Google Scholar 

  19. Hanifi, A., Schmid, P.J., Henningson, D.S.: Transient growth in compressible boundary layer flow. Phys. Fluids 8(3), 826 (1996)

    Article  MathSciNet  Google Scholar 

  20. George, K.J., Sujith, R.I.: On Chu’s disturbance energy. J. Sound Vib. 330, 5280 (2011)

    Article  Google Scholar 

  21. Colonius, T., Rowley, C.W., Freund, J.B., Murray, R.M.: On the choice of norm for modeling compressible flow dynamics at reduced-order using the POD. In: 41st IEEE Conference on Decision and Control (2002)

  22. Prigogine, I.: Introduction to Thermodynamics of Irreversible Process, 3rd edn. Interscience, New York (1967)

    Google Scholar 

  23. Ziegler, H.: An Introduction to Thermomechanics, 2nd edn. North-Holland Publishing Company, Amsterdam (1983)

    MATH  Google Scholar 

  24. Barbera, E.: On the principle of minimal entropy production for Navier–Stokes–Fourier fluids. In: Continuum Mechanical Thermodynamics (1999)

  25. Struchtrup, H., Weiss, W.: Maximum of the local entropy production becomes minimal in stationary processes. Phys. Rev. Lett. 80(23), 5048 (1998)

    Article  Google Scholar 

  26. Lucia, U.: Maximum or minimum entropy generation for open systems? Physica A 391(12), 3392 (2012)

    Article  MathSciNet  Google Scholar 

  27. Lucia, U.: Entropy generation: minimum inside and maximum outside. Physica A 396(15), 61 (2013)

    MathSciNet  Google Scholar 

  28. Bussey, G.M.H.: Entropy considerations applied to shock unsteadiness in hypersonic inlets. Ph.D. thesis (2012)

  29. Xu, G., Zhao, L., Yang, C.T.: Derivation and verification of minimum energy dissipation rate principle of fluid based on minimum entropy production rate principle. Int. J. Sedim. Res. 30, 16 (2015)

    Google Scholar 

  30. Evans, L.C.: Entropy and partial differential equations. Technical report. Course notes

  31. Parsani, M., Carpenter, M.H., Nielsen, E.J.: Entropy stable wall boundary conditions for the compressible Navier–Stokes equations. Technical report (2014)

  32. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)

    Article  MathSciNet  Google Scholar 

  33. Lax, P., Levermore, C., Venakides, S.: The generation and propagation of oscillations in dispersive initial value problems and their limiting behavior (1993)

  34. Makridakis, C., Perthame, B.: Sharp CFL, discrete kinetic formulation, and entropic schemes for scalar conservation laws. SIAM J. Numer. Anal. 41(3), 1032 (2003). https://doi.org/10.1137/S0036142902402997

    Article  MathSciNet  MATH  Google Scholar 

  35. Gokcen, T.: Entropy relations for nonequilibrium gas mixtures: monatomic and diatomic gasses (2008)

  36. Vincenti, W.G., Kruger, C.H.: Introduction to Physical Gas Dynamics. Wiley, New York (1965)

    Google Scholar 

  37. Garbet, X., Dubuit, N., Asp, E., Sarazin, Y., Bourdelle, C., Ghendrih, P., Hoang, G.T.: Turbulent fluxes and entropy production rate. Phys. Plasmas 12, 082511 (2005)

    Article  Google Scholar 

  38. Vogel, E.: Entropy-based analysis for application to highly compressible flows. Ph.D. thesis (2021)

  39. Fischer, M.C.: Spreading of a turbulent disturbance. AIAA J. 10(7), 957 (1972)

    Article  Google Scholar 

  40. Vogel, E., Coder, J.G.: Entropy-based modal decomposition of high-speed, vortex-dominated flows (2021)

  41. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89 (2000)

    Article  MathSciNet  Google Scholar 

  42. Visbal, M.R., Gaitonde, D.V.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155 (2002)

    Article  MathSciNet  Google Scholar 

  43. Klunker, E.B., McLean, F.E.: Effect of thermal properties on laminar-boundary-layer characteristics. Technical report. NACA technical note 2916 (1953)

  44. Bitter, N.P., Shepherd, J.E.: Stability of highly cooled hypervelocity boundary layers. J. Fluid Mech. 778, 586 (2015)

    Article  MathSciNet  Google Scholar 

  45. Bitter, N.P., Shepherd, J.E.: Transient growth in hypersonic boundary layers. In: 7th AIAA Theoretical Fluid Mechanics Conference (2014)

  46. Malik, M.R.: Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86, 376 (1990)

    Article  Google Scholar 

  47. DeSpirito, J., Kennedy, K.D., Mikkelsen, C.D., Chaplin, R.: Predictions of a supersonic jet-in-crossflow: comparisons among CFD solvers and with experiment. In: 32nd AIAA Applied Aerodynamics Conference (2014)

  48. McDonough, J.M., Weatherly, D.C., Catton, I., Harvey, D.W.: Further studies of supersonic jet interaction with a hypersonic crossflow. In: 26th Joint Propulsion Conference (1990)

  49. Liang, C., Sun, M., Liu, Y., Li, G., Yu, J.: Numerical study of flow structures and mixing characteristics of a sonic jet in supersonic crossflow. Acta Astronaut. 166, 78 (2019)

    Article  Google Scholar 

  50. Nichols, R.H., Buning, P.G.: User’s Manual for OVERFLOW 2.2. NASA Langley Research Center, Hampton, VA (2010)

    Google Scholar 

  51. Chan, W.M., Rogers, S.E., Pandya, S.A., Kao, D.L., Buning, P.G., Meakin, R.L., Boger, D.A., Nash, S.M.: Chimera Grid Tools User’s Manual. Moffett Field, CA (2010)

    Google Scholar 

  52. Chan, W.M., III, R.J.G., Rogers, S.E., Buning, P.G.: Best practices in overset grid generation. AIAA paper 2002-3197 (2002)

  53. Tramel, R.W., Nichols, R.H., Buning, P.G.: Addition of improved shock-capturing schemes to OVERFLOW 2.1. AIAA Paper 2009-3988 (2009)

  54. Sutherland, W.: The viscosity of gasses and molecular force. Lond. Edinb. Dublin Philos. Mag. J. Sci. 36(223), 507 (1893)

    Article  Google Scholar 

  55. Gustavsson, L.H.: Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241–260 (1991). https://doi.org/10.1017/S002211209100174X

    Article  MATH  Google Scholar 

  56. Reddy, S.C., Henningson, D.S.: Energy growth in viscous channel flows. J. Fluid Mech. 252, 209–238 (1993). https://doi.org/10.1017/S0022112093003738

    Article  MathSciNet  MATH  Google Scholar 

  57. Karban, U., Bugeat, B., Martini, E., Towne, A., Cavalieri, A., Lesshafft, L., Agarwal, A., Jordan, P., Colonius, T.: Ambiguity in mean-flow-based linear analysis. J. Fluid Mech. 330, R5-1–R5-12 (2021)

Download references

Acknowledgements

This research was supported by the Air Force Research Laboratory (AFRL) through subcontracts with the University of Tennessee with the University of Dayton Research Institute (UDRI) on prime contract number FA8650-18-C-2553. Images were created using FieldView. This material was cleared for public release by the Air Force Research Laboratory (case number AFRL-2021-1165, 3 May 2021). The data that support the findings of this study are subject to export restrictions under prime contract number FA8650-18-C-2553 and so are not publicly available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan A. Vogel.

Additional information

Communicated by Vassilios Theofilis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, E.A., Coder, J.G. A novel entropy normalization scheme for characterization of highly compressible flows. Theor. Comput. Fluid Dyn. 36, 641–670 (2022). https://doi.org/10.1007/s00162-022-00617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-022-00617-y

Keywords

Navigation