Skip to main content
Log in

Electrophoretic motion of a porous polyelectrolyte microcapsule

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the problem of electrophoretic motion of a polyelectrolyte capsule with a porous arbitrary charged conducting shell in an electrolyte (of the same type as the one inside the capsule’s cavity) under the action of an external electric field. The corresponding boundary value problem for the velocity components and pressure in the case of small electrical potentials is analytically solved in quadratures. The solution is analyzed numerically for different values of the specific permeability of the capsule, and the thickness of the porous and the electric double layers. The minimum of electrophoretic velocity dependence on the inverse permeability of the porous layer has been found. It is shown that the electrophoretic mobility decreases upon decrease in the conductivity of the material constituting the porous layer. This means that a dielectric capsule can be used for electrophoresis as well. Moreover, its velocity will be even greater than that of a conducting capsule, all other conditions being equal.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dukhin, S.S., Derjaguin, B.V.: Electrophoresis. Nauka, Moscow (1976)

    Google Scholar 

  2. Ohno, K., Tachikawa, K., Manz, A.: Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29, 4443–4453 (2008). https://doi.org/10.1002/elps.200800121

    Article  Google Scholar 

  3. Roldughin, V.I.: Nonequilibrium thermodynamics of colloidal systems. Russ. Chem. Rev. 81(10), 875–917 (2012). https://doi.org/10.1070/RC2012v081n10ABEH004313

    Article  Google Scholar 

  4. Tambe, D.E., Sharma, M.M.: The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability. Adv. Colloid Int. Sci. 52, 1–63 (1994). https://doi.org/10.1016/0001-8686(94)80039-1

    Article  Google Scholar 

  5. Sasse, A.G.B.M., Nazaroff, W.W., Gadgil, A.J.: Particle filter based on thermophoretic deposition from natural convection flow. Aerosol Sci. Technol. 20, 227–238 (1994). https://doi.org/10.1080/02786829408959679

    Article  Google Scholar 

  6. Bhusnoor, S.S., Bhandarkar, U.V., Sethi, V., Parikh, P.P.: Thermophoresis deposition studies for NaCl and diesel exhaust particulate matter under laminar flow. J. Aerosol Sci. 105, 84–93 (2017). https://doi.org/10.1016/j.jaerosci.2016.11.011

    Article  Google Scholar 

  7. Ye, Y., Pui, D.Y.H., Liu, B.Y.H., Opiolka, S., Blumhorst, S., Fissan, H.: Thermophoretic effect of particle deposition on a free-standing semiconductor wafer in a clean room. J. Aerosol Sci. 22, 63–72 (1991). https://doi.org/10.1016/0021-8502(91)90093-W

    Article  Google Scholar 

  8. Williams, M.M.R., Loyalka, S.K.: Aerosol Science: Theory and Practice. Pergamon Press, Oxford (1991)

    Google Scholar 

  9. Ohshima, H.: Electrophoretic mobility of soft particles. J. Colloid Interface Sci. 163(2), 474–483 (1994). https://doi.org/10.1006/jcis.1994.1126

    Article  Google Scholar 

  10. Keh, H.J., Jan, J.S.: Boundary effects on diffusiophoresis and electrophoresis: motion of a colloidal sphere normal to a plane wall. J. Colloid Interface Sci. 183, 458–475 (1996). https://doi.org/10.1006/jcis.1996.0569

    Article  Google Scholar 

  11. Chen, P.J., Keh, H.J.: Diffusiophoresis and electrophoresis of a charged sphere parallel to one or two plane walls. J. Colloid Interface Sci. 286(2), 774–791 (2005). https://doi.org/10.1016/j.jcis.2005.01.026

    Article  Google Scholar 

  12. Yariv, E., Brenner, H.: Near-contact electrophoretic motion of a sphere parallel to a planar wall. J. Fluid Mech. 484, 85–111 (2003). https://doi.org/10.1017/S002211200300418X

    Article  MathSciNet  MATH  Google Scholar 

  13. Squires, T.M., Bazant, M.Z.: Breaking symmetries in induced-charge electro-osmosis and electrophoresis. J. Fluid Mech. 560, 65–101 (2006). https://doi.org/10.1017/S0022112006000371

    Article  MathSciNet  MATH  Google Scholar 

  14. Khair, A.S., Squires, T.M.: The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys. Fluids (2009). https://doi.org/10.1063/1.3116664

    Article  MATH  Google Scholar 

  15. Yariv, E., Miloh, T.: Electro-convection about conducting particles. J. Fluid Mech. 595, 163–172 (2008). https://doi.org/10.1017/S0022112007009196

    Article  MathSciNet  MATH  Google Scholar 

  16. Bazant, M.Z., Squires, T.M.: Induced-charge electrokinetic phenomena. Curr. Opin. Colloid Interface Sci. 15, 203–213 (2010). https://doi.org/10.1016/j.cocis.2010.01.003

    Article  Google Scholar 

  17. Zhao, H.: On the effect of hydrodynamic slip on the polarization of a nonconducting spherical particle in an alternating electric field. Phys. Fluids (2010). https://doi.org/10.1063/1.3464159

    Article  Google Scholar 

  18. Boymelgreen, A.M., Miloh, T.: A theoretical study of induced-charge dipolophoresis of ideally polarizable asymmetrically slipping Janus particles. Phys. Fluids (2011). https://doi.org/10.1063/1.3609804

    Article  Google Scholar 

  19. Ganchenko, G.S., Frants, E.A., Shelistov, V.S., Nikitin, N.V., Amiroudine, S., Demekhin, E.A.: Extreme nonequilibrium electrophoresis of an ion-selective microgranule. Phys. Rev. Fluids (2019). https://doi.org/10.1103/PhysRevFluids.4.043703

    Article  Google Scholar 

  20. Bédard, M.F., De Geest, B.G., Skirtach, A.G., Möhwald, H., Sukhorukov, G.B.: Polymeric microcapsules with light responsive properties for encapsulation and release. Adv. Colloid Interface Sci. 158, 2–14 (2010). https://doi.org/10.1016/j.cis.2009.07.007

    Article  Google Scholar 

  21. Tabeling, P.: Investigating slippage, droplet breakup, and synthesizing microcapsules in microfluidic systems. Phys. Fluids (2010). https://doi.org/10.1063/1.3323086

    Article  MATH  Google Scholar 

  22. Gopmandal, P.P., Bhattacharyya, S., Ohshima, H.: Effect of core charge density on the electrophoresis of a soft particle coated with polyelectrolyte layer. Colloid Polym. Sci. 294, 727–733 (2016). https://doi.org/10.1007/s00396-015-3824-0

    Article  Google Scholar 

  23. Vasin, S.I., Kharitonova, T.V.: Uniform liquid flow around porous spherical capsule. Colloid J. 73(1), 18–23 (2011). https://doi.org/10.1134/S1061933X11010194

    Article  Google Scholar 

  24. Vasin, S.I., Kharitonova, T.V.: Flow of liquid around the encapsulated drop of another liquid. Colloid J. 73(3), 297–302 (2011). https://doi.org/10.1134/S1061933X11030161

    Article  Google Scholar 

  25. Vasin, S.I., Kharitonova, T.V.: Flow around a capsule with a fractal core. Colloid J. 75(3), 247–252 (2013). https://doi.org/10.1134/S1061933X13030186

    Article  Google Scholar 

  26. Li, W.C., Keh, H.J.: Electrophoretic mobility of charged porous shells or microcapsules and electric conductivity of their dilute suspensions. Colloids Surf. A 497, 154–166 (2016). https://doi.org/10.1016/j.colsurfa.2016.02.028

    Article  Google Scholar 

  27. Molotilin, T.Y., Lobaskin, V., Vinogradova, O.I.: Electrophoresis of Janus particles: a molecular dynamic study. J. Chem. Phys. (2016). https://doi.org/10.1063/1.4972522

    Article  Google Scholar 

  28. Hsu, H.P., Lee, E.: Electrophoresis of a single charged porous sphere in an infinite medium of electrolyte solution. J. Colloid Interface Sci. 390, 85–95 (2013). https://doi.org/10.1016/j.jcis.2012.09.036

    Article  Google Scholar 

  29. Maurya, S.K., Gopmandal, P.P., Ohshima, H., Duval, J.F.L.: Electrophoresis of composite soft particles with differentiated core and shell permeabilities to ions and fluid flow. J. Colloid Interface Sci. 558, 280–290 (2020). https://doi.org/10.1016/j.jcis.2019.09.118

    Article  Google Scholar 

  30. O’Brien, R.W., White, L.R.: Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 74, 1607–1626 (1978). https://doi.org/10.1039/F29787401607

    Article  Google Scholar 

  31. Henry, D.C.: Cataphoresis of suspended particles. I. The equation of Cataphoresis. Proc. R. Soc. Lond. Ser. A 133, 106–129 (1931). https://doi.org/10.1098/rspa.1931.0133

    Article  MATH  Google Scholar 

  32. Hermans, J.J.: Sedimentation and electrophoresis of porous spheres. J. Polym. Sci. 18(90), 527–534 (1955). https://doi.org/10.1002/pol.1955.120189008

    Article  Google Scholar 

  33. Miller, J.F.: Determination of protein charge in aqueous solution using electrophoretic light scattering: a critical investigation of the theoretical fundamentals and experimental methodologies. Langmuir 36(29), 8641–8654 (2020). https://doi.org/10.1021/acs.langmuir.0c01694

    Article  Google Scholar 

  34. Martínez, C., Corma, A.: 5.05 – Zeolites, in Comprehensive Inorganic Chemistry II (Second Edition) From Elements to Applications. 5, 103–131 (2013). https://doi.org/10.1016/B978-0-08-097774-4.00506-4

  35. Ohshima, H.: Electrophoretic mobility of soft particles. Electrophoresis 16(1), 1360–1363 (1995). https://doi.org/10.1002/elps.11501601224

    Article  Google Scholar 

Download references

Acknowledgements

We dedicate this work to the memory of Professor Vyacheslav Roldughin, an outstanding physicochemist and our dear colleague who began working on the problem tackled in this paper about 8 years ago but passed away prematurely. This work was supported by the Russian Science Foundation (Project No. 20-19-00670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly N. Filippov.

Ethics declarations

Author contributions

ANF was involved in conceptualization, methodology, supervision, funding acquisition, writing—review and editing. DYK helped in methodology, formal analyses, validation, software, data curation, writing—original draft. PAA contributed to methodology, software, data curation.

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A.N., Khanukaeva, D.Y. & Aleksandrov, P.A. Electrophoretic motion of a porous polyelectrolyte microcapsule. Theor. Comput. Fluid Dyn. 36, 465–490 (2022). https://doi.org/10.1007/s00162-022-00607-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-022-00607-0

Keywords

Navigation