Skip to main content
Log in

Large eddy simulations of premixed CH\(_{{\mathbf {4}}}\) bluff-body flames operating close to the lean limit using quasi-global chemistry and an algebraic chemiluminescence model

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The present work describes the numerical study of unconfined turbulent premixed methane/air flames stabilized on an axisymmetric conical baffle under lean and ultra-lean, close to blow-off conditions. A finite-volume-based LES method, using the dynamic Smagorinsky subgrid model in combination with two turbulent combustion methodologies, the thickened flame model and the implicit LES (ILES) laminar reaction rate approach were employed in the investigation. Methane–air oxidation was modeled with a 14-species reduced scheme. OH* chemiluminescent species levels were also evaluated by post-processing quasi-steady-state-derived algebraic expressions, exploiting directly simulated species thus enabling direct comparisons with experimental images. The quality of the simulations was appraised against experimental data for velocity, turbulence, temperature, species mass fractions, heat release profiles as well as chemiluminescence images for conditions far and close to blow-off. Both turbulent combustion models followed closely several intrinsic trends and variations of the flame front anchoring and disposition close to the burner rim shear layers and along the reverse flow region as the fuel level was reduced toward the lean limit. The interaction of the bluff-body recirculation with the adjacent toroidal reacting shear layer and the impact of combustion and heat release on the development of the turbulent velocity and species fields in the near-wake recovery zone were adequately reproduced for both mixtures. Quantitative deviations between simulations and measurements, regarding heat release and OH species, increased for the near-LBO flame with an attendant extrapolated underprediction of the blow-off event by about 8% in terms of equivalence ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BR:

Blockage ratio

\({C}_{\mathrm{s}}\) :

Smagorinsky constant

CFL:

Courant number

\({D}_{\mathrm{c }}\) :

Containing pipe diameter

\({D}_{{b}}\) :

Axisymmetric disk diameter

\({D}_{{k }}\) :

Diffusion coefficient species k

h:

Mixture enthalpy

\({IQ}_{{\nu }}\) :

Mesh quality index

\({M}_{{k}}\) :

Molecular weight of specie k

r :

Radial location

P :

Static pressure

Pr :

Prandtl number

\({R}_{\mathrm {u}}\) :

Universal gas constant

\({S}_{{ij}}\) :

Resolvable strain tensor

Sc :

Schmidt number

\({S}_{\mathrm {L }}\) :

Laminar flame speed

T :

Time-averaged temperature

\({U}_{\mathrm {b}}\) :

Mixture bulk velocity at cone exit

x :

Axial location

\({x}_{{i }}\) :

Coordinate directions (\(i= 1, 2, 3\))

\({Y}_{{k }}\) :

Mass concentration

\(\delta _{ij}\) :

Kronecker delta \((\delta _{ij}= 0\,{\text {for }}\,i\ne j,\,\delta _{ij}= 1\,{\text {for}}\,i= j)\)

\(\Delta \), \(\Delta x, y\), \({z}_{{i}}\) :

Characteristic mesh sizes

\(\mu _{{t}}\), \(\nu _{{t }}\) :

SGS eddy viscosity coefficients

\(\rho \) :

Density

\(\tau (= {D}_{{b}}\)/\({U}_{{b}})\) :

Characteristic flow time

\(\tau _{\mathrm {ch}}\) :

Chemical timescale

\(\tau _{\mathrm {k}}\) :

Kolmogorov timescale

\(\tau _{{ij}}\), \(\sigma _{{ij }}\) :

Turbulent stresses

\(\Phi \) :

Equivalence ratio

\(\omega \) :

Reaction rate source

References

  1. ANSYS®: Academic Research, Release 18 (2017)

  2. Celik, I.B., Cehreli, Z.N., Yavuz, I.: Index of resolution quality for large eddy simulations. J. Fluids Eng. 127(5), 949–958 (2005)

    Article  Google Scholar 

  3. Chaudhuri, S., Cetegen, B.M.: Blowoff characteristics of bluff-body stabilized conical premixed flames with upstream spatial mixture gradients and velocity oscillations. Combust. Flame 153(4), 616–633 (2008)

    Article  Google Scholar 

  4. Chowdhury, B.R., Cetegen, B.M.: Effects of free stream flow turbulence on blowoff characteristics of bluff-body stabilized premixed flames. Combust. and Flame 157, 302–316 (2018)

    Article  Google Scholar 

  5. Colin, O., Ducros, F., Veynante, D., Poinsot, T.J.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000)

    Article  MATH  Google Scholar 

  6. Duwig, C., Nogenmyr, K.J., Chan, C.K., Dunn, M.J.: Large Eddy simulations of a piloted lean premix jet flame using finite-rate chemistry. Combust. Theory Modell. 15(4), 537–568 (2011). https://doi.org/10.1080/13647830.2010.548531

    Article  MATH  Google Scholar 

  7. Esclapez, L., Ma, P.C., Mayhew, E., Xu, R., Stouffer, S., Lee, T., Wang, H., Ihme, M.: Fuel effects on lean blow-out in a realistic gas turbine combustor. Combust. Flame 181, 82–99 (2017). https://doi.org/10.1016/j.combustflame.2017.02.035

    Article  Google Scholar 

  8. Farrace, D., Chung, K., Bolla, M., Wright, Y.M., Boulouchos, K., Mastorakos, E.: A LES-CMC formulation for premixed flames including differential diffusion. Combust. Theory Model. 22(2), 411–431 (2018). https://doi.org/10.1080/13647830.2017.1398351

    Article  MathSciNet  Google Scholar 

  9. Farrace, D., Chung, K., Pandurangi, S.S., Wright, Y.M., Boulouchos, K., Swaminathan, N.: Unstructured LES-CMC modelling of turbulent premixed bluff body flames close to blow-off. Proc. Combust. Inst. 36(1), 1977–1985 (2017). https://doi.org/10.1016/j.proci.2016.07.028

    Article  Google Scholar 

  10. Fiorina, B., Mercier, R., Kuenne, G., Ketelheun, A., Avdic, A., Janicka, J., Geyer, D., Dreizler, A., Alenius, E., Duwig, C., Trisjono, P., Kleinheinz, K., Kang, S., Pitsch, H., Proch, F., Marincola, F.C., Kempf, A.: Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion. Combust. Flame 162, 4264–4282 (2015)

    Article  Google Scholar 

  11. Fureby, C.: Large eddy simulation modelling of combustion for propulsion applications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1899), 2957–2969 (2009). https://doi.org/10.1098/rsta.2008.0271

    Article  MATH  Google Scholar 

  12. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A Fluid Dyn. 3(3), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  13. Gokulakrishnan P., Kwon S., Hamer A.J., Klassen M.S., Roby R.J.: Reduced kinetic mechanism for reactive flow simulation of syngas/methane combustion at gas turbine conditions. In: ASME Turbo Expo 2006: Power for Land, Sea, and Air. Barcelona, Spain: pp. 513–521 (2006). https://doi.org/10.1115/GT2006-90573

  14. Han, W., Wang, H., Kuenne, G., Hawkes, E.R., Chen, J.H., Janicka, J., Hasse, C.: Large eddy simulation/dynamic thickened flame modeling of a high Karlovitz number turbulent premixed jet flame. In: Proceedings of the Combustion Institute (2018). https://doi.org/10.1016/j.proci.2018.06.228

  15. Hodzic, E., Alenius, E., Duwig, C., Szasz, R.S., Fuchs, L.: A large eddy simulation study of bluff body flame dynamics approaching blow-off. Combust. Sci. Technol. 189(3), 1107–1137 (2017). https://doi.org/10.1080/00102202.2016.1275592

    Article  Google Scholar 

  16. Hodzic, E., Jangi, M., Szasz, R.Z., Bai, X.S.: A Large eddy simulation of bluff body flames close to blow-off using an Eulerian stochastic field method. Combust. Flame 181, 1–15 (2017)

    Article  Google Scholar 

  17. Jaravel, T., Riber, E., Cuenot, B., Bulat, G.: Large Eddy simulation of an industrial gas turbine combustor using reduced chemistry with accurate pollutant prediction. Proc. Combust. Inst. 36(2), 3817–3825 (2017). https://doi.org/10.1016/j.proci.2016.07.027

    Article  Google Scholar 

  18. Kariuki, J., Dawson, J.R., Mastorakos, E.: Measurements in turbulent premixed bluff body flames close to blow-off. Combust. Flame 159(4), 2589–2607 (2012)

    Article  Google Scholar 

  19. Kariuki, J., Dowlut, A., Yuan, R., Balachandran, R., Mastorakos, E.: Heat release imaging in turbulent premixed methane-air flames close to blow-off. Proc. Combust. Inst. 35, 1443–1450 (2015)

    Article  Google Scholar 

  20. Lee, C.Y., Cant, S.: Large-eddy simulation of a bluff-body stabilized turbulent premixed flame using the transported flame surface density approach. Combust. Theory Model. 21(4), 722–748 (2017). https://doi.org/10.1080/13647830.2017.1293849

    Article  MathSciNet  Google Scholar 

  21. Løvs, T., Nilsson, D., Mauss, F.: Automatic reduction procedure for chemical mechanisms applied to premixed methane/air flames. Proc. Combust. Inst. 28(1), 1809–1815 (2000). https://doi.org/10.1016/S0082-0784(00)80583-4

    Article  Google Scholar 

  22. Lytras, I., Koutmos, P., Dogkas, E.: Reduced kinetic models for complex turbulent methane flame simulations. Combust. Explos. Shock Waves 55(1) (2019)

  23. Magnussen, B.F., Ertesvåg, I.S.: The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol. 159(1), 213–235 (2000)

    Article  Google Scholar 

  24. Massey, J.C., Langella, I., Swaminathan, N.: Large Eddy simulation of a bluff body stabilised premixed flame using flamelets. Flow Turbul. Combust. 101(4), 973–992 (2018). https://doi.org/10.1007/s10494-018-9948-9

    Article  Google Scholar 

  25. Nambully, S., Domingo, P., Moureau, V., Vervisch, L.: A filtered-laminar-flame PDF sub-grid-scale closure for LES of premixed turbulent flames: II. Application to a stratified bluff-body burner. Combust. Flame 161, 1775–1791 (2014). https://doi.org/10.1016/j.combustflame.2014.01.006

    Article  Google Scholar 

  26. Nori, V.N., Seitzman, J.M.: CH* chemiluminescence modeling for combustion diagnostics. Proc. Combust. Inst. 32(I), 895–903 (2009). https://doi.org/10.1016/j.proci.2008.05.050

    Article  Google Scholar 

  27. Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143, 587–598 (2005)

    Article  Google Scholar 

  28. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. R.T. Edwards Inc., Philadelphia, PA (2005)

    Google Scholar 

  29. Porumbel, I., Menon, S.: Large Eddy simulation of Bluff body stabilized premixed flame. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno Nevada: 2006 AIAA 2006-0152 (2006). https://doi.org/10.2514/6.2006-152

  30. Proch, F., Kempf, A.M.: Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry. Combust. Flame 161, 2627–2646 (2014). https://doi.org/10.1016/j.combustflame.2014.04.010

    Article  Google Scholar 

  31. Rochette, B., Collin-Bastiani, F., Gicquel, L., Vermorel, O., Veynante, D., Poinsot, T.: Influence of chemical schemes, numerical method and dynamic turbulent combustion modeling on LES of premixed turbulent flames. Combust. Flame 191, 417–430 (2018). https://doi.org/10.1016/j.combustflame.2018.01.016

    Article  Google Scholar 

  32. Shanbhogue, S.J., Husain, S., Lieuwen, T.: Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog. Energy Combust. Sci. 35, 98–120 (2009). https://doi.org/10.1016/j.pecs.2008.07.003

    Article  Google Scholar 

  33. Souflas K., Menon S., Paterakis G., Dogkas E., Koutmos P., Gururajan V., Egolfopoulos F.N.: Determination of laminar flame speeds using axisymmetric Bunsen flames: intricacies and accuracy. In MCS 9, International Centre for Heat and Mass Transfer (ICHMT) and Combustion Institute (2015)

  34. Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., Law, C.K.: USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds (2007). http://ignis.usc.edu/USC_Mech_II.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Mitsopoulos.

Additional information

Communicated by Patrick Jenny.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsopoulos, E.P., Lytras, I. & Koutmos, P. Large eddy simulations of premixed CH\(_{{\mathbf {4}}}\) bluff-body flames operating close to the lean limit using quasi-global chemistry and an algebraic chemiluminescence model. Theor. Comput. Fluid Dyn. 33, 325–340 (2019). https://doi.org/10.1007/s00162-019-00497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-019-00497-9

Keywords

Navigation