Skip to main content
Log in

Detecting exotic wakes with hydrodynamic sensors

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Wake sensing for bioinspired robotic swimmers has been the focus of much investigation owing to its relevance to locomotion control, especially in the context of schooling and target following. Many successful wake sensing strategies have been devised based on models of von Kármán-type wakes; however, such wake sensing technologies are invalid in the context of exotic wake types that commonly arise in swimming locomotion. Indeed, exotic wakes can exhibit markedly different dynamics, and so must be modeled and sensed accordingly. Here, we propose a general wake detection protocol for distinguishing between wake types from measured hydrodynamic signals alone. An ideal-flow model is formulated and used to demonstrate the general wake detection framework in a proof-of-concept study. We show that wakes with different underlying dynamics impart distinct signatures on a fish-like body, which can be observed in time-series measurements at a single location on the body surface. These hydrodynamic wake signatures are used to construct a wake classification library that is then used to classify unknown wakes from hydrodynamic signal measurements. Under ideal settings, the wake detection protocol is found to have an accuracy rate of over 95% in the majority of performance studies conducted. Further, proper tuning can lead to accuracy rates of 80% or better in low signal-to-noise environments. Thus, exotic wake detection is shown to be a viable concept, suggesting that such technologies have the potential to become key enablers of multiple-model sensing and locomotion control strategies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akanyeti, O., Thornycroft, P.J.M., Lauder, G.V., Yanagitsuru, Y.R., Peterson, A.N., Liao, J.C.: Fish optimize sensing and respiration during undulatory swimming. Nat. Commun. 7, 11044 (2016). https://doi.org/10.1038/ncomms11044

    Article  Google Scholar 

  2. Aref, H., Stremler, M.A., Ponta, F.L.: Exotic vortex wakes–point vortex solutions. J. Fluids Struct. 22(6–7), 929–940 (2006). https://doi.org/10.1016/j.jfluidstructs.2006.04.015

    Article  Google Scholar 

  3. Arnold, G.P.: Rheotropism in fishes. Biol. Rev. 49(4), 515–576 (1974). https://doi.org/10.1111/j.1469-185X.1974.tb01173.x

    Article  Google Scholar 

  4. Basu, S., Stremler, M.A.: On the motion of two point vortex pairs with glide-reflective symmetry in a periodic strip. Phys. Fluids 27(10), 103603 (2015)

    Article  Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Bleckmann, H.: Reception of Hydrodynamic Stimuli in Aquatic and Semiaquatic Animals, Progress in Zoology, vol. 41. Gustav Fischer Verlag, New York (1994)

    Google Scholar 

  7. Bleckmann, H., Zelick, R.: Lateral line system of fish. Integr. Zool. 4(1), 13–25 (2009)

    Article  Google Scholar 

  8. Borazjani, I., Sotiropoulos, F.: Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 211(10), 1541–1558 (2008)

    Article  Google Scholar 

  9. Bouffanais, R., Weymouth, G.D., Yue, D.K.: Hydrodynamic object recognition using pressure sensing. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, p. rspa20100095. The Royal Society (2010)

  10. Chambers, L., Akanyeti, O., Venturelli, R., Ježov, J., Brown, J., Kruusmaa, M., Fiorini, P., Megill, W.: A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow. J. R. Soc. Interface 11(99), 20140467 (2014)

    Article  Google Scholar 

  11. Colvert, B., Kanso, E.: Fishlike rheotaxis. J. Fluid Mech. 793, 656–666 (2016). https://doi.org/10.1017/jfm.2016.141

    Article  MathSciNet  MATH  Google Scholar 

  12. Cottet, G.H., Koumoutsakos, P.D.: Vortex Methods: Theory and Practice. Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

  13. DeVries, L., Lagor, F.D., Lei, H., Tan, X., Paley, D.: Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line. Bioinspiration Biomim. 10(2), 025002 (2015). https://doi.org/10.1088/1748-3190/10/2/025002

    Article  Google Scholar 

  14. Franosch, J.M.P., Hagedorn, H.J.A., Goulet, J., Engelmann, J., Van Hemmen, J.L.: Wake tracking and the detection of vortex rings by the canal lateral line of fish. Phys. Rev. Lett. 103(7), 1–4 (2009). https://doi.org/10.1103/PhysRevLett.103.078102

    Article  Google Scholar 

  15. Gemmell, B.J., Adhikari, D., Longmire, E.K.: Volumetric quantification of fluid flow reveals fish’s use of hydrodynamic stealth to capture evasive prey. J. R. Soc. Interface 11(90), 20130880 (2014). https://doi.org/10.1098/rsif.2013.0880

    Article  Google Scholar 

  16. Hemati, M.S.: Learning wake regimes from snapshot data. In: AIAA Paper 2016-3781. 46th AIAA Fluid Dynamics Conference, AIAA Aviation, Washington, DC (2016)

  17. Katz, J., Plotkin, A.: Low-Speed Aerodynamics, 2nd edn. Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  18. Kern, S., Koumoutsakos, P.: Simulations of optimized anguilliform swimming. J. Exp. Biol. 209(24), 4841–4857 (2006)

    Article  Google Scholar 

  19. Klein, A., Bleckmann, H.: Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals. Beilstein J. Nanotechnol. 2(1), 276–283 (2011). https://doi.org/10.3762/bjnano.2.32

    Article  Google Scholar 

  20. Lentink, D., Muijres, F.T., Donker-Duyvis, F.J., van Leeuwen, J.L.: Vortex-wake interactions of a flapping foil that models animal swimming and flight. J. Exp. Biol. 211(Pt 2), 267–273 (2008). https://doi.org/10.1242/jeb.006155

    Article  Google Scholar 

  21. Liao, J.C., Beal, D.N., Lauder, G.V., Triantafyllou, M.S.: Fish exploiting vortices decrease muscle activity. Science 302, 1566–1569 (2003)

    Article  Google Scholar 

  22. Marras, S., Killen, S.S., Lindström, J., McKenzie, D.J., Steffensen, J.F., Domenici, P.: Fish swimming in schools save energy regardless of their spatial position. Behav. Ecol. Sociobiol. 69, 219–226 (2015)

    Article  Google Scholar 

  23. Montgomery, J.C., Coombs, S., Baker, C.F.: The mechanosensory lateral line system of the hypogean form of astyanax fasciatus. Environ. Biol. Fishes 62(1), 87–96 (2001). https://doi.org/10.1023/A:1011873111454

    Article  Google Scholar 

  24. Moored, K.W., Dewey, P.A., Smits, A.J., Haj-Hariri, H.: Hydrodynamic wake resonance as an underlying principle of efficient unsteady propulsion. J. Fluid Mech. 708, 329–348 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Müller, U.K., van den Boogaart, J.G.M., van Leeuwen, J.L.: Flow patterns of larval fish: undulatory swimming in the intermediate flow regime. J. Exp. Biol. 211(Pt 2), 196–205 (2008). https://doi.org/10.1242/jeb.005629

    Article  Google Scholar 

  26. Newton, P.K.: The \(N\)-Vortex Problem: Analytical Techniques. Springer, New York (2001)

    Book  MATH  Google Scholar 

  27. Pitcher, T.J., Partridge, B.L., Wardle, C.S.: A blind fish can school. Science (New York, N.Y.) 194(4268), 963–965 (1976). https://doi.org/10.1126/science.982056

    Article  Google Scholar 

  28. Pohlmann, K., Grasso, F.W., Breithaupt, T.: Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc. Natl. Acad. Sci. 98(13), 7371–7374 (2001). https://doi.org/10.1073/pnas.121026298

    Article  Google Scholar 

  29. Ren, Z., Mohseni, K.: A model of the lateral line of fish for vortex sensing. Bioinspiration Biomim. 7(3), 036016 (2012). https://doi.org/10.1088/1748-3182/7/3/036016

    Article  Google Scholar 

  30. Saffman, P.: Vortex Dynamics. Cambridge University Press, New York (1992)

    MATH  Google Scholar 

  31. Schnipper, T., Andersen, A., Bohr, T.: Vortex wakes of a flapping foil. J. Fluid Mech. 633, 411–423 (2009)

    Article  MATH  Google Scholar 

  32. Sichert, A.B., Bamler, R., van Hemmen, J.L.: Hydrodynamic object recognition: when multipoles count. Phys. Rev. Lett. 102(5), 058104 (2009)

    Article  Google Scholar 

  33. Smits, A.J., Moored, K.W., Dewey, P.A.: Fluid-structure-sound interactions and control. In: Proceedings of the 2nd Symposium on Fluid-Structure-Sound Interactions and Control, Chap. The Swimming of Manta Rays, pp. 291–300. Springer, Berlin (2014). https://doi.org/10.1007/978-3-642-40371-2_43

  34. Spedding, G.R.: Wake signature detection. Annu. Rev. Fluid Mech. 46, 273–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stremler, M.A.: Relative equilibria of singly periodic point vortex arrays. Phys. Fluids 15(12), 3767–3775 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stremler, M.A.: On relative equilibria and integrable dynamics of point vortices in periodic domains. Theor. Computat. Fluid Dyn. 24(1), 25–37 (2010)

    Article  MATH  Google Scholar 

  37. Stremler, M.A., Basu, S.: On point vortex models of exotic bluff body wakes. Fluid Dyn. Res. 46(6), 061410 (2014). https://doi.org/10.1088/0169-5983/46/6/061410

    Article  MathSciNet  Google Scholar 

  38. Stremler, M.A., Salmanzadeh, A., Basu, S., Williamson, C.H.K.: A mathematical model of 2P and 2C vortex wakes. J. Fluids Struct. 27(5–6), 774–783 (2011). https://doi.org/10.1016/j.jfluidstructs.2011.04.004

    Article  Google Scholar 

  39. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson, Boston (2006)

    Google Scholar 

  40. Triantafyllou, M.S., Weymouth, G.D., Miao, J.: Biomimetic survival hydrodynamics and flow sensing. Annu. Rev. Fluid Mech. 48(1), 150720185944007 (2016). https://doi.org/10.1146/annurev-fluid-122414-034329

    Article  MathSciNet  MATH  Google Scholar 

  41. Tytell, E.D., Borazjani, I., Sotiropoulos, F., Baker, T.V., Anderson, E.J., Lauder, G.V.: Disentangling the functional roles of morphology and motion in the swimming of fish. Integr. Comp. Biol. 50(6), 1140–1154 (2010)

    Article  Google Scholar 

  42. Wang, M., Hemati, M.: Classifying exotic wakes with a flow speed sensor. In: AIAA Paper, pp. 2018–1289 (2018)

  43. Weihs, D., Webb, P.: Optimal avoidance and evasion tactics in predator–prey interactions. J. Theor. Biol. 106(2), 189–206 (1984). https://doi.org/10.1016/0022-5193(84)90019-5

    Article  Google Scholar 

  44. Williamson, C., Roshko, A.: Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2(4), 355–381 (1988)

    Article  Google Scholar 

  45. Windsor, S.P., Norris, S.E., Cameron, S.M., Mallinson, G.D., Montgomery, J.C.: The flow fields involved in hydrodynamic imaging by blind mexican cave fish (astyanax fasciatus). part i: open water and heading towards a wall. J. Exp. Biol. 213(22), 3819–3831 (2010). https://doi.org/10.1242/jeb.040741

    Article  Google Scholar 

  46. Windsor, S.P., Norris, S.E., Cameron, S.M., Mallinson, G.D., Montgomery, J.C.: The flow fields involved in hydrodynamic imaging by blind mexican cave fish (astyanax fasciatus). part ii: gliding parallel to a wall. J. Exp. Biol. 213(22), 3832–3842 (2010). https://doi.org/10.1242/jeb.040790

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar S. Hemati.

Additional information

Communicated by Maziar S. Hemati.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Hemati, M.S. Detecting exotic wakes with hydrodynamic sensors. Theor. Comput. Fluid Dyn. 33, 235–254 (2019). https://doi.org/10.1007/s00162-019-00493-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-019-00493-z

Keywords

Navigation