Closed-loop control of a free shear flow: a framework using the parabolized stability equations

Abstract

In this study the parabolized stability equations (PSE) are used to build reduced-order-models (ROMs) given in terms of frequency and time-domain transfer functions (TFs) for application in closed-loop control. The control law is defined in two steps; first it is necessary to estimate the open-loop behaviour of the system from measurements, and subsequently the response of the flow to an actuation signal is determined. The theoretically derived PSE TFs are used to account for both of these effects. Besides its capability to derive simplified models of the flow dynamics, we explore the use of the TFs to provide an a priori determination of adequate positions for efficiently forcing along the direction transverse to the mean flow. The PSE TFs are also used to account for the relative position between sensors and actuators which defines two schemes, feedback and feedforward, the former presenting a lower effectiveness. Differences are understood in terms of the evaluation of the causality of the resulting gain, which is made without the need to perform computationally demanding simulations for each configuration. The ROMs are applied to a direct numerical simulation of a convectively unstable 2D mixing layer. The derived feedforward control law is shown to lead to a reduction in the mean square values of the objective fluctuation of more than one order of magnitude, at the output position, in the nonlinear simulation, which is accompanied by a significant delay in the vortex pairing and roll-up. A study of the robustness of the control law demonstrates that it is fairly insensitive to the amplitude of inflow perturbations and model uncertainties given in terms of Reynolds number variations.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Akers, J.C., Bernstein, D.S.: Armarkov least-squares identification. In: American Control Conference, 1997. Proceedings of the 1997, vol. 1, pp. 186–190. IEEE (1997)

  2. 2.

    Ashpis, D.E., Reshotko, E.: The vibrating ribbon problem revisited. J. Fluid Mech. 213, 531–547 (1990)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bagheri, S., Henningson, D.S., Hoepffner, J., Schmid, P.J.: Input-output analysis and control design applied to a linear model of spatially developing flows. Appl. Mech. Rev. 62(2), 020,803 (2009)

    Article  Google Scholar 

  4. 4.

    Belson, B.A., Semeraro, O., Rowley, C.W., Henningson, D.S.: Feedback control of instabilities in the two-dimensional blasius boundary layer: the role of sensors and actuators. Phys. Fluids (1994-present) 25(5), 054,106 (2013)

    Article  Google Scholar 

  5. 5.

    Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures, vol. 729. Wiley, New York (2011)

    MATH  Google Scholar 

  6. 6.

    Biau, D.: Transient growth of perturbations in stokes oscillatory flows. J. Fluid Mech. 794, R4 (2016)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Biringen, S.: Active control of transition by periodic suction-blowing. Phys. Fluids (1958–1988) 27(6), 1345–1347 (1984)

    Article  Google Scholar 

  8. 8.

    Bridges, J., Brown, C.A.: Parametric testing of chevrons on single flow hot jets. AIAA Paper 2824, 2004 (2004)

    Google Scholar 

  9. 9.

    Cavalieri, A.V.G., Jordan, P., Gervais, Y., Wei, M., Freund, J.B.: Intermittent sound generation and its control in a free-shear flow. Phys. Fluids 22, 115113 (2010)

    Article  Google Scholar 

  10. 10.

    Chen, K.K., Rowley, C.W.: H 2 optimal actuator and sensor placement in the linearised complex Ginzburg–Landau system. J. Fluid Mech. 681, 241–260 (2011)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Cheung, L.C., Lele, S.K.: Linear and nonlinear processes in two-dimensional mixing layer dynamics and sound radiation. J. Fluid Mech. 625, 321–351 (2009)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Colonius, T., Lele, S.K., Moin, P.: Sound generation in a mixing layer. J. Fluid Mech. 330, 375–409 (1997)

    Article  Google Scholar 

  13. 13.

    Crighton, D.G., Gaster, M.: Stability of slowly diverging jet flow. J. Fluid Mech. 77(2), 387–413 (1976)

    Article  Google Scholar 

  14. 14.

    Devasia, S.: Should model-based inverse inputs be used as feedforward under plant uncertainty? IEEE Trans. Autom. Control 47(11), 1865–1871 (2002)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Devasia, S., Chen, D., Paden, B.: Nonlinear inversion-based output tracking. IEEE Trans. Autom. Control 41(7), 930–942 (1996)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Fabbiane, N., Bagheri, S., Henningson, D.S.: Energy efficiency and performance limitations of linear adaptive control for transition delay. J. Fluid Mech. 810, 60–81 (2017)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Fabbiane, N., Semeraro, O., Bagheri, S., Henningson, D.S.: Adaptive and model-based control theory applied to convectively unstable flows. Appl. Mech. Rev. 66(6), 060,801 (2014)

    Google Scholar 

  18. 18.

    Fabbiane, N., Simon, B., Fischer, F., Grundmann, S., Bagheri, S., Henningson, D.S.: On the role of adaptivity for robust laminar flow control. J. Fluid Mech. 767, R1 (2015)

    Article  Google Scholar 

  19. 19.

    Gautier, N., Aider, J.L.: Feed-forward control of a perturbed backward-facing step flow. J. Fluid Mech. 759, 181–196 (2014)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Gudmundsson, K., Colonius, T.: Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97–128 (2011)

    Article  Google Scholar 

  21. 21.

    Herbert, T.: Parabolized stability equations. Annu. Rev. Fluid Mech. 29(1), 245–283 (1997)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Hervé, A., Sipp, D., Schmid, P.J., Samuelides, M.: A physics-based approach to flow control using system identification. J. Fluid Mech. 702, 26–58 (2012)

    Article  Google Scholar 

  23. 23.

    Hill, D.C.: Adjoint systems and their role in the receptivity problem for boundary layers. J. Fluid Mech. 292, 183–204 (1995)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Huerre, P., Batchelor, G.K., Moffatt, H.K., Worster, M.G.: Open shear flow instabilities. In: Perspectives in fluid dynamics - A collective introduction to current research. Cambridge University Press, pp. 159–229 (2000)

  25. 25.

    Huerre, P., Monkewitz, P.A.: Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151–168 (1985)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Huerre, P., Monkewitz, P.A.: Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22(1), 473–537 (1990)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Juang, J.N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. 8(5), 620–627 (1985)

    Article  Google Scholar 

  28. 28.

    Kachanov, Y.S.: Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26(1), 411–482 (1994)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Kim, J., Bewley, T.R.: A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383–417 (2007)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Koenig, M., Sasaki, K., Cavalieri, A.V.G., Jordan, P., Gervais, Y.: Jet-noise control by fluidic injection from a rotating plug: linear and nonlinear sound-source mechanisms. J. Fluid Mech. 788, 358–380 (2016)

    Article  Google Scholar 

  31. 31.

    Lajús, F.C., Deschamps, C.J., Cavalieri, A.V.G.: Spatial stability characteristics of non-circular jets. In: 21st AIAA/CEAS Aeroacoustics Conference, p. 2537 (2015)

  32. 32.

    Le Rallic M., Jordan, P., Gervais, Y.: Jet-noise reduction: the effect of azimuthal actuation modes. In: 22nd AIAA/CEAS Aeroacoustics Conference, p. 2868 (2016)

  33. 33.

    Levin, O., Henningson, D.S.: Exponential vs algebraic growth and transition prediction in boundary layer flow. Flow Turbul. Combust. 70(1–4), 183–210 (2003)

    Article  Google Scholar 

  34. 34.

    Li, F., Malik, M.R.: On the nature of pse approximation. Theor. Comput. Fluid Dyn. 8(4), 253–273 (1996)

    Article  Google Scholar 

  35. 35.

    Li, Y., Gaster, M.: Active control of boundary-layer instabilities. J. Fluid Mech. 550, 185–205 (2006)

    Article  Google Scholar 

  36. 36.

    Michalke, A.: Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159–199 (1984)

    Article  Google Scholar 

  37. 37.

    Mitchell, B.E., Lele, S.K., Moin, P.: Direct computation of the sound generated by vortex pairing in an axisymmetric jet. J. Fluid Mech. 383, 113–142 (1999)

    Article  Google Scholar 

  38. 38.

    Ogata, K., Yang, Y.: Modern Control Engineering, vol. 4. Prentice hall (2002)

  39. 39.

    Press, W.H.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  40. 40.

    Sasaki, K., Piantanida, S., Cavalieri, A.V., Jordan, P.: Real-time modelling of wavepackets in turbulent jets. J. Fluid Mech. 821, 458–481 (2017)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Schmid, P.J., Sipp, D.: Linear control of oscillator and amplifier flows. Phys. Rev. Fluids 1(4), 040,501 (2016)

    Article  Google Scholar 

  42. 42.

    Semeraro, O., Pralits, J.O., Rowley, C.W., Henningson, D.S.: Riccati-less approach for optimal control and estimation: an application to two-dimensional boundary layers. J. Fluid Mech. 731, 394–417 (2013)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Sinha, A., Gaitonde, D.V., Sohoni, N.: Parabolized stability analysis of dual-stream jets. In: 22nd AIAA/CEAS Aeroacoustics Conference, p. 3057 (2016)

  44. 44.

    Sipp, D., Schmid, P.: Closed-loop control of fluid flow: a review of linear approaches and tools for the stabilization of transitional flows. AerospaceLab 2013(6), 1–11 (2013)

    Google Scholar 

  45. 45.

    Thomas, A., Saric, W.: Harmonic and subharmonic waves during boundary-layer transition. Bull. Am. Phys. Soc. 26, 1252 (1981)

    Google Scholar 

  46. 46.

    Thomas, A.S.: The control of boundary-layer transition using a wave-superposition principle. J. Fluid Mech. 137, 233–250 (1983)

    Article  Google Scholar 

  47. 47.

    Violato, D., Scarano, F.: Three-dimensional vortex analysis and aeroacoustic source characterization of jet core breakdown. Phys. Fluids (1994-present) 25(1), 015,112 (2013)

    Article  Google Scholar 

  48. 48.

    Wei, M., Freund, J.: A noise controlled free shear flow. J. Fluid Mech. 546, 123–152 (2006)

    Article  Google Scholar 

  49. 49.

    White, E.B., Saric, W.S.: Application of variable leading-edge roughness for transition control on swept wings. AIAA Paper 283, 2000 (2000)

    Google Scholar 

Download references

Acknowledgements

Kenzo Sasaki has received a scholarship from FAPESP, Grant Number 2016/25187-4. André V. G. Cavalieri and Peter Jordan have been supported by the Science Without Borders program, Project Number A073/2013. André V. G. Cavalieri was supported by a CNPq Grant 44796/2014-2.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kenzo Sasaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Daniel J. Bodony.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sasaki, K., Tissot, G., Cavalieri, A.V.G. et al. Closed-loop control of a free shear flow: a framework using the parabolized stability equations. Theor. Comput. Fluid Dyn. 32, 765–788 (2018). https://doi.org/10.1007/s00162-018-0477-x

Download citation

Keywords

  • Closed-loop flow control
  • Reduced-order-modelling
  • Inversion controllers
  • Instability control