Advertisement

Theoretical and Computational Fluid Dynamics

, Volume 32, Issue 1, pp 47–62 | Cite as

Diffusional growth of cloud particles: existence and uniqueness of solutions

  • Manuel BaumgartnerEmail author
  • Peter Spichtinger
Original Article

Abstract

Diffusional growth of cloud particles is commonly described by a coupled system of parabolic equations and ordinary differential equations. The Dirichlet boundary condition for the parabolic equation is obtained from the solution of the ordinary differential equations, but this solution itself depends on the solution of the parabolic equations. We first present the governing equations describing diffusional growth of cloud particles. In a second step, we consider a simplified model problem, motivated by the diffusional growth equations. The main difference between the simplified model problem and the diffusional growth equations consists in neglecting the dependence of the domain for the parabolic equations on the solution. For the model problem, we show unique solvability using a fixed point method. Finally, we discuss application of the main result for the model problem to the diffusional growth equations and illustrate these equations with the help of a numerical solution.

Keywords

Parabolic partial differential equations Ordinary differential equations Diffusion phenomena Cloud physics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amann, H.: Ordinary Differential Equations, de Gruyter Studies in Mathematics, vol. 13. Walter de Gruyter & Co., Berlin (1990)CrossRefGoogle Scholar
  2. 2.
    Baumgartner, M.: Direkte Interaktion von Hydrometeoren durch Diffusion in Mischphasenwolken. Ph.D. thesis, Johannes Gutenberg-Universität Mainz (2016)Google Scholar
  3. 3.
    Bergeron, T.: The problem of artificial control of rainfall on the globe. Tellus 1(1), 32–43 (1949)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)Google Scholar
  5. 5.
    Findeisen, W.: Die Kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung. Meteor Z 55, 121–133 (1938)Google Scholar
  6. 6.
    Grabowski, W.W., Wang, L.P.: Growth of cloud droplets in a turbulent environment. Ann. Rev. Fluid Mech. 45(1), 293–324 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hu, Q.: Generalized normal derivatives and their applications in DDMs with nonmatching grids and DG method. Numer. Math. Theory Methods Appl. 1(4), 383–409 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kondepudi, D., Prigogine, I.: Modern Thermodynamics. John Wiley & Son, Chichester (1998)zbMATHGoogle Scholar
  9. 9.
    Lamb, D., Verlinde, J.: Physics and Chemistry of Clouds. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  10. 10.
    Libbrecht, K.G.: The physics of snow crystals. Rep. Prog. Phys. 68(4), 855–895 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Límaco, J., Medeiros, L., Zuazua, E.: Existence, uniqueness and controllability for parabolic equations in non-cylindrical domains. Matemática Contemporânea 23(Part II), 49–70 (2002)Google Scholar
  12. 12.
    Maxwell, J.C.: Diffusion. Reprinted in WD Niven (Ed), The Scientific Papers of James Clerk Maxwell vol. 2, pp. 625–645 (1877)Google Scholar
  13. 13.
    McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  14. 14.
    Pruppacher, H.R., Beard, K.V.: A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q. J. R. Meteorol. Soc. 96(408), 247–256 (1970)CrossRefGoogle Scholar
  15. 15.
    Schweizer, B.: Partielle Differentialgleichungen, Springer-Lehrbuch Masterclass, vol. 10. Springer, Berlin (2013)CrossRefGoogle Scholar
  16. 16.
    Vali, G., DeMott, P.J., Möhler, O., Whale, T.F.: Technical note: a proposal for ice nucleation terminology. Atmos. Chem. Phys. 15(18), 10,263–10,270 (2015)Google Scholar
  17. 17.
    Wang, P.K.: Physics and Dynamics of Clouds and Precipitation. Cambridge University Press, Cambridge (2013)CrossRefzbMATHGoogle Scholar
  18. 18.
    Wegener, A.: Thermodynamik der Atmosphäre. J. A Barth, Leipzig (1911)Google Scholar
  19. 19.
    Yosida, K.: Functional Analysis, Die Grundlehren der mathematischen Wissenschaften, vol. 123, 3rd edn. Springer, Berlin (1971)Google Scholar
  20. 20.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications. Springer, New York (1990)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute for Atmospheric PhysicsJohannes Gutenberg UniversityMainzGermany

Personalised recommendations