Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Theoretical and Computational Fluid Dynamics
  3. Article
Particle–boundary interaction in a shear-driven cavity flow
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Inviscid Suspension Flow along a Flat Boundary

01 March 2021

O. B. Gus’kov

Fully resolved simulation of single-particle dynamics in a microcavity

27 November 2018

Maoqiang Jiang, Shizhi Qian & Zhaohui Liu

Diffusiophoresis of a charged particle in a charged cavity with arbitrary electric double layer thickness

25 July 2018

Ya C. Chiu & Huan J. Keh

A lattice Boltzmann study of particle settling in a fluctuating multicomponent fluid under confinement

25 November 2021

Xiao Xue, Luca Biferale, … Federico Toschi

Effects of finite-size neutrally buoyant particles on the turbulent channel flow at a Reynolds number of 395

23 January 2019

Zhaosheng Yu, Chenlin Zhu, … Xueming Shao

Exact solution for the slow motion of a spherical particle in the presence of an interface with slip regime

28 April 2021

H. H. Sherief, M. S. Faltas & Kareem E. Ragab

Laminar flow past an infinite planar array of fixed particles: point-particle approximation, Oseen equations and resolved simulations

02 June 2020

Yuhang Zhang, Yayun Wang & Andrea Prosperetti

Asymptotic analysis for a homogeneous bubbling regime Vlasov–Fokker–Planck/Navier–Stokes system

16 July 2020

Joshua Ballew

Fully Correlated Stochastic Inter-Particle Collision Model for Euler–Lagrange Gas–Solid Flows

06 February 2020

Berend van Wachem, Thomas Curran & Fabien Evrard

Download PDF
  • Original Article
  • Open Access
  • Published: 04 April 2017

Particle–boundary interaction in a shear-driven cavity flow

  • Francesco Romanò  ORCID: orcid.org/0000-0002-9511-47181 &
  • Hendrik C. Kuhlmann1 

Theoretical and Computational Fluid Dynamics volume 31, pages 427–445 (2017)Cite this article

  • 991 Accesses

  • 31 Citations

  • Metrics details

Abstract

The motion of a heavy finite-size tracer is numerically calculated in a two-dimensional shear-driven cavity. The particle motion is computed using a discontinuous Galerkin-finite-element method combined with a smoothed profile method resolving all scales, including the flow in the lubrication gap between the particle and the boundary. The centrifugation of heavy particles in the recirculating flow is counteracted by a repulsion from the shear-stress surface. The resulting limit cycle for the particle motion represents an attractor for particles in dilute suspensions. The limit cycles obtained by fully resolved simulations as a function of the particle size and density are compared with those obtained by one-way coupling using the Maxey–Riley equation and an inelastic collision model for the particle–boundary interaction, solely characterized by an interaction-length parameter. It is shown that the one-way coupling approach can faithfully approximate the true limit cycle if the interaction length is selected depending on the particle size and its relative density.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Brenner, C.E.: Fundamentals of Multiphase Flow. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  2. Geurts, B.J., Clercx, H., Uijttewaal, W. (eds.): Particle-Laden Flow: From Geophysical to Kolmogorov Scales. Springer, Berlin (2007)

    Google Scholar 

  3. Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M., Tsuji, Y.: Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  4. Seetharaman, S.: Treatise on Process Metallurgy Process Phenomena. Elsevier, Amsterdam (2013)

    Google Scholar 

  5. Liu, L., Zheng, H., Williams, L., Zhang, F., Wang, R., Hertzberg, J., Shandas, R.: Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results. Phys. Med. Biol. 53, 1397 (2008)

    Article  Google Scholar 

  6. Merzkirch, W.: Flow Visualization. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  7. Muldoon, F.H., Kuhlmann, H.C.: Coherent particulate structures by boundary interaction of small particles in confined periodic flows. Phys. D 253, 40 (2013)

    Article  MathSciNet  Google Scholar 

  8. de Motta, J.C.B., Breugem, W.P., Gazanion, B., Estivalezes, J.L., Vincent, S., Climent, E.: Numerical modelling of finite-size particle collisions in a viscous fluid. Phys. Fluids 25, 083302 (2013)

    Article  Google Scholar 

  9. Lecoq, N., Anthore, R., Cichocki, B., Szymczak, P., Feuillebois, F.: Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech. 513, 247 (2004)

    Article  MATH  Google Scholar 

  10. Tan, J., Luo, K., Fan, J.: Three-dimensional particle-resolved direct numerical simulation study of behaviors of a particle settling near a vertical wall. Powder Technol. 275, 290 (2015)

    Article  Google Scholar 

  11. Swan, J.W., Brady, J.F.: Particle motion between parallel walls: hydrodynamics and simulation. Phys. Fluids 22, 103301 (2010)

    Article  Google Scholar 

  12. Breugem, W.P.: A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231, 4469 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nakayama, Y., Kim, K., Yamamoto, R.: Direct simulation of flowing colloidal dispersions by smoothed profile method. Adv. Powder Technol. 21, 206 (2010)

    Article  Google Scholar 

  14. Yamamoto, R., Nakayama, Y., Kim, K.: A method to resolve hydrodynamic interactions in colloidal dispersions. Comput. Phys. Commun. 169, 301 (2005)

    Article  Google Scholar 

  15. Costa, P., Boersma, B.J., Westerweel, J., Breugem, W.P.: Collision model for fully resolved simulations of flows laden with finite-size particles. Phys. Rev. E 92, 053012 (2015)

    Article  MathSciNet  Google Scholar 

  16. Hofmann, E., Kuhlmann, H.C.: Particle accumulation on periodic orbits by repeated free surface collisions. Phys. Fluids 23, 072106 (2011)

    Article  Google Scholar 

  17. Mukin, R.V., Kuhlmann, H.C.: Topology of hydrothermal waves in liquid bridges and dissipative structures of transported particles. Phys. Rev. E 88, 053016 (2013)

    Article  Google Scholar 

  18. Kuhlmann, H.C.: Thermocapillary Convection in Models of Crystal Growth. Springer, Berlin (1999)

    Google Scholar 

  19. Schwabe, D., Tanaka, S., Mizev, A., Kawamura, H.: Particle accumulation structures in time-dependent thermocapillary flow in a liquid bridge under microgravity conditions. Microgravity Sci. Technol. 18, 117 (2006)

    Article  Google Scholar 

  20. Nakayama, Y., Yamamoto, R.: Simulation method to resolve hydrodynamic interactions in colloidal dispersions. Phys. Rev. E 71, 036707 (2005)

    Article  Google Scholar 

  21. Nakayama, Y., Kim, K., Yamamoto, R.: Hydrodynamic effects in colloidal dispersions studied by a new efficient direct simulation. Flow Dyn. 832, 245 (2006)

    Google Scholar 

  22. Yamamoto, R., Kim, K., Nakayama, Y.: Strict simulations of non-equilibrium dynamics of colloids. Colloid Surf. A 311, 42 (2007)

    Article  Google Scholar 

  23. Jafari, S., Yamamoto, R., Rahnama, M.: Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions. Phys. Rev. E 83, 026702 (2011)

    Article  Google Scholar 

  24. Kim, K., Nakayama, Y., Yamamoto, R.: A smoothed profile method for simulating charged colloidal dispersions. Comput. Phys. Commun. 169, 104 (2005)

    Article  Google Scholar 

  25. Kim, K., Yamamoto, R.: Efficient simulations of charged colloidal dispersions: a density functional approach. Macromol. Theor. Simul. 14, 278 (2005)

    Article  Google Scholar 

  26. Kim, K., Nakayama, Y., Yamamoto, R.: Direct numerical simulations of electrophoresis of charged colloids. Phys. Rev. Lett. 96, 208302 (2006)

    Article  Google Scholar 

  27. Nakayama, Y., Kim, K., Yamamoto, R.: Simulating (electro) hydrodynamic effects in colloidal dispersions: smoothed profile method. Eur. Phys. J. E 26, 361 (2008)

    Article  Google Scholar 

  28. Yamamoto, R., Nakayama, Y., Kim, K.: Smoothed profile method to simulate colloidal particles in complex fluids. Int. J. Mod. Phys. C 20, 1457 (2009)

    Article  MATH  Google Scholar 

  29. Luo, X., Beskok, A., Karniadakis, G.E.: Modeling electrokinetic flows by the smoothed profile method. J. Comput. Phys. 229, 3828 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kang, S., Suh, Y.K.: Direct simulation of flows with suspended paramagnetic particles using one-stage smoothed profile method. J. Fluid Struct. 27, 266 (2011)

    Article  Google Scholar 

  31. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  32. Luo, X., Maxey, M.R., Karniadakis, G.E.: Smoothed profile method for particulate flows: error analysis and simulations. J. Comput. Phys. 228, 1750 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Romanò, F., Kuhlmann, H.C.: Smoothed profile method for momentum and heat transfer in particulate flows. Int. J. Numer. Methods Fluids 83, 485 (2017)

    Article  MathSciNet  Google Scholar 

  34. Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883 (1983)

    Article  MATH  Google Scholar 

  36. Taylor, G.I., Green, A.E.: Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 158, 499 (1937)

    Article  MATH  Google Scholar 

  37. Domesi, S., Kuhlmann, H.C.: PAS project report 2002. Tech. rep., ZARM (2002)

  38. Romanò, F., Kuhlmann, H.C.: Numerical investigation of the interaction of a finite-size particle with a tangentially moving boundary. Int. J. Heat Fluid Flow 62, 75 (2016)

    Article  Google Scholar 

  39. Schwabe, D., Frank, S.: Particle accumulation structures (PAS) in the toroidal thermocapillary vortex of a floating-zone model for a step in planet formation? Adv. Space Res. 23, 1191 (1999)

    Article  Google Scholar 

  40. Brenner, H.: The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 16, 242 (1961)

    Article  Google Scholar 

Download references

Acknowledgements

Open access funding provided by TU Wien (TUW).

Author information

Authors and Affiliations

  1. Institute of Fluid Mechanics and Heat Transfer, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria

    Francesco Romanò & Hendrik C. Kuhlmann

Authors
  1. Francesco Romanò
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Hendrik C. Kuhlmann
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Francesco Romanò.

Additional information

Communicated by S. Balachandar.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanò, F., Kuhlmann, H.C. Particle–boundary interaction in a shear-driven cavity flow. Theor. Comput. Fluid Dyn. 31, 427–445 (2017). https://doi.org/10.1007/s00162-017-0430-4

Download citation

  • Received: 05 August 2016

  • Accepted: 21 March 2017

  • Published: 04 April 2017

  • Issue Date: August 2017

  • DOI: https://doi.org/10.1007/s00162-017-0430-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Particle–boundary interaction
  • Shear stress
  • Fully resolved simulation
  • DG-FEM
  • SPM
  • Particle accumulation
  • Limit cycle
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.