Skip to main content
Log in

Influence of hydrodynamic slip on convective transport in flow past a circular cylinder

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The presence of a finite tangential velocity on a hydrodynamically slipping surface is known to reduce vorticity production in bluff body flows substantially while at the same time enhancing its convection downstream and into the wake. Here, we investigate the effect of hydrodynamic slippage on the convective heat transfer (scalar transport) from a heated isothermal circular cylinder placed in a uniform cross-flow of an incompressible fluid through analytical and simulation techniques. At low Reynolds (\({\textit{Re}}\ll 1\)) and high Péclet (\({\textit{Pe}}\gg 1\)) numbers, our theoretical analysis based on Oseen and thermal boundary layer equations allows for an explicit determination of the dependence of the thermal transport on the non-dimensional slip length \(l_s\). In this case, the surface-averaged Nusselt number, Nu transitions gradually between the asymptotic limits of \(Nu \sim {\textit{Pe}}^{1/3}\) and \(Nu \sim {\textit{Pe}}^{1/2}\) for no-slip (\(l_s \rightarrow 0\)) and shear-free (\(l_s \rightarrow \infty \)) boundaries, respectively. Boundary layer analysis also shows that the scaling \(Nu \sim {\textit{Pe}}^{1/2}\) holds for a shear-free cylinder surface in the asymptotic limit of \({\textit{Re}}\gg 1\) so that the corresponding heat transfer rate becomes independent of the fluid viscosity. At finite \({\textit{Re}}\), results from our two-dimensional simulations confirm the scaling \(Nu \sim {\textit{Pe}}^{1/2}\) for a shear-free boundary over the range \(0.1 \le {\textit{Re}}\le 10^3\) and \(0.1\le {\textit{Pr}}\le 10\). A gradual transition from the lower asymptotic limit corresponding to a no-slip surface, to the upper limit for a shear-free boundary, with \(l_s\), is observed in both the maximum slip velocity and the Nu. The local time-averaged Nusselt number \(Nu_{\theta }\) for a shear-free surface exceeds the one for a no-slip surface all along the cylinder boundary except over the downstream portion where unsteady separation and flow reversal lead to an appreciable rise in the local heat transfer rates, especially at high \({\textit{Re}}\) and Pr. At a Reynolds number of \(10^3\), the formation of secondary recirculating eddy pairs results in appearance of additional local maxima in \(Nu_{\theta }\) at locations that are in close proximity to the mean secondary stagnation points. As a consequence, Nu exhibits a non-monotonic variation with \(l_s\) increasing initially from its lowermost value for a no-slip surface and then decreasing before rising gradually toward the upper asymptotic limit for a shear-free cylinder. A non-monotonic dependence of the spanwise-averaged Nu on \(l_s\) is observed in three dimensions as well with the three-dimensional wake instabilities that appear at sufficiently low \(l_s\), strongly influencing the convective thermal transport from the cylinder. The analogy between heat transfer and single-component mass transfer implies that our results can directly be applied to determine the dependency of convective mass transfer of a single solute on hydrodynamic slip length in similar configurations through straightforward replacement of Nu and \({\textit{Pr}}\) with Sherwood and Schmidt numbers, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leal, L.G.: Vorticity transport and wake structure for bluff bodies at finite Reynolds number. Phys. Fluids 1, 124–131 (1989)

    Article  Google Scholar 

  2. Legendre, D., Lauga, E., Magnaudet, J.: Influence of slip on the dynamics of two-dimensional wakes. J. Fluid Mech. 633, 437–447 (2009)

    Article  MATH  Google Scholar 

  3. You, D., Moin, P.: Effects of hydrophobic surfaces on the drag and lift of a circular cylinder. Phys. Fluids 19(8), 081701 (2007)

    Article  MATH  Google Scholar 

  4. Seo, W., Song, C.G.: Numerical simulation of laminar flow past a circular cylinder with slip conditions. Int. J. Numer. Meth. Fluids 68(12), 1538–1560 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, D., Li, S., Xue, Y., Yang, Y., Su, W., Xia, Z., Shi, Y., Lin, H., Duan, H.: The effect of slip distribution on flow past a circular cylinder. J. Fluids Struct. 51, 211–224 (2014)

    Article  Google Scholar 

  6. Rothstein, J.P.: Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109 (2010)

    Article  Google Scholar 

  7. Muralidhar, P., Ferrer, N., Daniello, R., Rothstein, J.P.: Influence of slip on the flow past superhydrophobic circular cylinders. J. Fluid Mech. 680, 459–476 (2011)

    Article  MATH  Google Scholar 

  8. Leal, L.G.: Advanced Transport Phenomena. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  9. Haase, A.S., Chapman, S.J., Tsai, P.A., Lohse, D., Lammertink, R.G.H.: The Graetz-Nusselt problem extended to continuum flows with finite slip. J. Fluid Mech. 764, R3 (2015)

    Article  Google Scholar 

  10. Koplik, J., Banavar, R.J.: Corner flow in the sliding plate problem. Phys. Fluids 7(12), 3118–3125 (1995)

    Article  MATH  Google Scholar 

  11. Qian, T., Wang, X.-P.: Driven cavity flow: from molecular dynamics to continuum hydrodynamics. SIAM Multiscale Model. Simul. 3(4), 749–763 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nie, X., Robbins, M.O., Chen, S.: Resolving singular forces in cavity flow: Multiscale modeling from atomic to millimeter scales. Phys. Rev. Lett. 96, 134501 (2006)

    Article  Google Scholar 

  13. Snoeijer, J.H., Andreotti, B.: Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kirknis, E., Davis, S.H.: Hydrodynamic theory of liquid slippage on a solid substrate near a moving contact line. Phys. Rev. Lett. 110, 234503 (2013)

    Article  Google Scholar 

  15. Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)

    Article  Google Scholar 

  16. Barrat, J.-L., Bocquet, L.: Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett 82, 4671–4674 (1999)

    Article  Google Scholar 

  17. Lauga, E., Brenner, M.P., Stone, H.A.: Microfluidics: the no-slip boundary condition. In: Foss, J., Tropea, C., Yarin, A.L. (eds.) Handbook of Experimental Fluid Dynamics, pp. 1219–1240. Springer, New York (2007)

    Google Scholar 

  18. Karniadakis, G., Beskok, A., Aluru, N.: Microflows and Nanoflows: Fundamentals and Simulation. Springer, New York (2005)

    MATH  Google Scholar 

  19. Eckert, E.R.G., Drake, R.M.: Analysis of Heat and Mass Transfer. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  20. Dongari, N., Agrawal, A., Agrawal, A.: Analytical solution of gaseous slip flow in long microchannels. Int. J. Heat Mass Transf. 50, 3411–3421 (2007)

    Article  MATH  Google Scholar 

  21. Colin, S.: Gas microflows in the slip flow regime: a critical review on convective heat transfer. ASME J. Heat Transf. 134(2), 020908 (2012)

    Article  Google Scholar 

  22. Cole, J., Roshko, A.: Heat transfer from wires at Reynolds numbers in the Oseen range. In: Proceedings of Heat Transfer and Fluid Mechanics Institute. University of California (1954)

  23. Levey, H.C.: Heat transfer in slip flow at low Reynolds number. J. Fluid Mech. 6, 385–391 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hieber, C.A., Gebhart, B.: Low Reynolds number heat transfer from a circular cylinder. J. Fluid Mech. 32, 21–28 (1968)

    Article  MATH  Google Scholar 

  25. Martin, M.J., Boyd, I.D.: Momentum and heat transfer in a laminar boundary layer with slip flow. J. Thermophys. Heat Transf. 20(4), 710–719 (2006)

    Article  Google Scholar 

  26. Maghsoudi, E., Martin, M.J., Devireddy, R.: Momentum and heat transfer in laminar slip flow over a cylinder. J. Thermophys. Heat Transf. 27(4), 607–614 (2013)

    Article  Google Scholar 

  27. Cai, C.: Near-continuum gas flows over a cylinder. J. Thermophys. Heat Transf. 30(1), 25–31 (2016)

    Article  MathSciNet  Google Scholar 

  28. Navier, C.L.M.H.: Memoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Inst. Fr. 6, 389–440 (1823)

    Google Scholar 

  29. Tomotika, S., Aoi, T.: The steady flow of viscous fluid past a sphere and circular cylinder at small Reynolds numbers. Q. J. Mech. Appl. Math. 3, 140–161 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  30. Veysey, J., Goldenfeld, N.: Simple viscous flows: from boundary layers to the renormalization group. Rev. Mod. Phys. 79, 883–927 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shukla, R.K., Arakeri, J.H.: Minimum power consumption for drag reduction on a circular cylinder by tangential surface motion. J. Fluid Mech. 715, 597–641 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moore, D.W.: The boundary layer on a spherical gas bubble. J. Fluid Mech. 16, 161–176 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  33. Magnaudet, J., Eames, I.: The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659–708 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schlichting, H.: Boundary Layer Theory. McGraw-Hill, New York (1960)

    MATH  Google Scholar 

  35. Shukla, R.K., Zhong, X.: Derivation of high-order compact finite difference schemes for nonuniform grid using polynomial interpolation. J. Comput. Phys. 204, 404–429 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shukla, R.K., Tatineni, M., Zhong, X.: Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier–Stokes equations. J. Comput. Phys. 224, 1064–1094 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hugues, S., Randriamampianina, A.: An improved projection scheme applied to pseudospectral methods for the incompressible Navier–Stokes equations. Int. J Numer. Meth. Fluids 28(3), 501–521 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Arakeri, J.H., Shukla, R.K.: A unified view of energetic efficiency in active drag reduction, thrust generation and self-propulsion through a loss coefficient with some applications. J. Fluids Struct. 41, 22–32 (2013)

    Article  Google Scholar 

  39. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477–539 (1996)

    Article  MathSciNet  Google Scholar 

  40. Bouard, R., Coutanceau, M.: The early stage of development of the wake behind an impulsively started cylinder for \(40 \le {Re} \le 10^4\). J. Fluid Mech. 101, 583–607 (1980)

    Article  Google Scholar 

  41. Barkley, D., Henderson, R.D.: Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215–241 (1996)

    Article  MATH  Google Scholar 

  42. Jeong, J., Hussai, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  Google Scholar 

  43. Perkins, H.C., Leppert, G.: Local heat-transfer coefficients on a uniformly heated cylinder. Int. J. Heat Mass Transf. 7, 143–158 (1964)

    Article  Google Scholar 

  44. Achenbach, E.: Total and local heat transfer from a smooth circular cylinder in cross-flow at high Reynolds number. Int. J. Heat Mass Transf. 18, 1387–1396 (1975)

    Article  Google Scholar 

  45. Sanitjai, S., Goldstein, R.J.: Forced convection heat transfer from a circular cylinder in crossflow to air and liquids. Int. J. Heat Mass Transf. 47, 4795–4805 (2004)

    Article  Google Scholar 

  46. Nakamura, H., Igarashi, T.: Variation of Nusselt number with flow regimes behind a circular cylinder for Reynolds numbers from 70 to 30000. Int. J. Heat Mass Transf. 47, 5169–5173 (2004)

    Article  Google Scholar 

  47. Abramowitz, M., Stegun, I.: Handbook of mathematical functions. Dover (1968)

  48. Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman and Hall, Boca Raton (2001)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratnesh K. Shukla.

Additional information

Communicated by Sergio Pirozzoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, N.M.A., Kumar, A. & Shukla, R.K. Influence of hydrodynamic slip on convective transport in flow past a circular cylinder. Theor. Comput. Fluid Dyn. 31, 251–280 (2017). https://doi.org/10.1007/s00162-017-0421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-017-0421-5

Keywords

Navigation