Skip to main content
Log in

Use of natural instabilities for generation of streamwise vortices in a laminar channel flow

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

An analysis of pressure-gradient-driven flows in channels with walls modified by transverse ribs has been carried out. The ribs have been introduced intentionally in order to generate streamwise vortices through centrifugally driven instabilities. The cost of their introduction, i.e. the additional pressure losses, have been determined. Linear stability theory has been used to determine conditions required for the formation of the vortices. It has been demonstrated that there exists a finite range of rib wave numbers capable of creating vortices. Within this range, there exists an optimal wave number which results in the minimum critical Reynolds number for the specified rib amplitude. The optimal wave numbers marginally depend on the rib positions and amplitudes. As the formation of the vortices can be interfered with by viscosity-driven instabilities, the critical conditions for the onset of such instabilities have also been determined. The rib geometries which result in the vortex formation with the smallest drag penalty and without interference from the viscosity-driven instabilities have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergles, A.E.: Handbook of Heat Transfer, 3rd edn. McGraw-Hill, New York (1998)

    Google Scholar 

  2. Bergles, A.E.: The implications and challenges of enhanced heat transfer for the chemical process industries. Chem. Eng. Res. Des. 79, 437–444 (2001)

    Article  Google Scholar 

  3. Hetsroni, G., Mosyak, A., Pogrebnyak, E., Yarin, L.P.: Fluid flow in micro-channels. Int. J. Heat Mass Transf. 48, 1982–1998 (2005)

    Article  Google Scholar 

  4. Floryan, J.M.: Vortex instability in a diverging–converging channel. J. Fluid Mech. 482, 17–50 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Moradi, H.V., Floryan, J.M.: Maximization of heat transfer across micro-channels. Int. J. Heat Mass Transf. 66, 517–530 (2013)

    Article  Google Scholar 

  6. Hou, H.W., Warkiani, M.E., Khoo, B.L., Li, Z.R., Soo, R.A., Tan, D.S.W., Lim, W.T., Han, J., Bhagat, A.A.S., Lim, C.T.: Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3, 1259 (2013). doi:10.1038/srep01259

    Article  Google Scholar 

  7. Jacobi, A.M., Shah, R.K.: Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent progress. Exp. Therm. Fluid Sci. 11, 295–309 (1995)

    Article  Google Scholar 

  8. Fiebig, M.: Embedded vortices in internal flow: heat transfer and pressure loss enhancement. Int. J. Heat Fluid Flow 16, 376–388 (1995)

    Article  Google Scholar 

  9. Lograni, P.M., Oliviera, M.M., Blaskovich, T.: Comparison of heat transfer augmentation techniques. AIAA J. 41, 337–362 (2003)

    Article  Google Scholar 

  10. Fiebig, M.: Vortices, generators and heat transfer. Trans. IChemE 76, 108–123 (1998)

    Article  MathSciNet  Google Scholar 

  11. Rayleigh, L.: On the dynamics of the revolving fluids. Sci. Pap. 6, 447–453 (1920)

    Google Scholar 

  12. Dean, W.: Fluid motion in a curved channel. Proc. R. Soc. Lond. Ser. A 121, 402–412 (1928)

    Article  MATH  Google Scholar 

  13. Görtler, H.: Instabilität laminarer grenzschichten an konkaven wänden gegenüber gewissen dreidimensionalen störungen. Zeitschrift für Angewandte Mathematik und Mechanik 21, 250–252 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  14. Floryan, J.M.: On the Görtler instability of boundary layers. Prog. Aerosp. Sci. 28, 235–271 (1991)

    Article  MATH  Google Scholar 

  15. Floryan, J.M.: Three-dimensional instabilities of laminar flow in a rough channel and the concept of hydraulically smooth wall. Eur. J. Mech. B Fluids 26, 305–329 (2007)

    Article  MATH  Google Scholar 

  16. Floryan, J.M.: Flow in a meandering channel. J. Fluid Mech. 770, 52–84 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gschwind, P., Regele, A., Kottke, V.: Sinusoidal wavy channels with Taylor–Görtler vortices. Exp. Therm. Fluid Sci. 11, 270–275 (1995)

    Article  Google Scholar 

  18. Budiman, A.C., Mitsudharmadi, H., Bouremel, Y., Winoto, S.H., Low, H.T.: Development of pre-set counter-rotating streamwise vortices in wavy channel. Exp. Therm. Fluid Sci. 71, 77–85 (2016)

    Article  Google Scholar 

  19. Rush, T.A., Newell, T.A., Jacobi, A.M.: An experimental study of flow and heat transfer in sinusoidal wavy passages. Int. J. Heat Mass Transf. 42, 1541–1553 (1999)

    Article  Google Scholar 

  20. Yin, J., Yang, G., Li, Y.: The effects of wavy plate phase shift on flow and heat transfer characteristics in corrugated channel. Energy Proc. 14, 1566–1573 (2012)

    Article  Google Scholar 

  21. Gepner, S.W., Floryan, J.M.: Flow dynamics and enhanced mixing in a converging-diverging channel. J. Fluid Mech. 807, 167–204 (2016)

  22. Bippes, H.: Experimental study of the laminar–turbulent transition of a concave wall in a parallel flow. NASA TM-75243 (1972)

  23. Floryan, J.M.: Two-dimensional instability of flow in a rough channel. Phys. Fluids 17, 044101 (2005)

    Article  MATH  Google Scholar 

  24. Floryan, J.M., Floryan, C.: Travelling wave instability in a diverging–converging channel. Fluid Dyn. Res. 42, 025509 (2010)

    Article  MATH  Google Scholar 

  25. Moradi, H.V., Floryan, J.M.: Flows in annuli with longitudinal grooves. J. Fluid Mech. 716, 280–315 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mohammadi, A., Floryan, J.M.: Pressure losses in grooved channels. J. Fluid Mech. 725, 23–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moradi, H.V., Floryan, J.M.: Algorithm for analysis of flows in ribbed annuli. Int. J. Numer. Methods Fluids 68, 805–838 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  29. Husain, S.Z., Floryan, J.M.: Spectrally-accurate algorithm for moving boundary problems for the Navier–Stokes equations. J. Comput. Phys. 229, 2287–2313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Husain, S.Z., Floryan, J.M.: Gridless spectral algorithm for Stokes flow with moving boundaries. Comput. Methods Appl. Mech. Eng. 198, 245–259 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Husain, S.Z., Floryan, J.M.: Immersed boundary conditions method for unsteady flow problems described by the Laplace operator. Int. J. Numer. Methods Fluids 56, 1765–1786 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cabal, A., Szumbarski, J., Floryan, J.M.: Numerical simulation of flows over corrugated walls. Comput. Fluids 30, 753–776 (2001)

    Article  MATH  Google Scholar 

  33. Schmid, P.J.: Nonmodal stability theory. Ann. Rev. Fluid Mech. 39, 129–162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  35. Floryan, J.M.: Stability of wall-bounded shear layers in the presence of simulated distributed surface roughness. J. Fluid Mech. 335, 29–55 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bloch, F.: Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Physik 52, 555–600 (1928)

    Article  MATH  Google Scholar 

  37. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  38. Moradi, H.V., Floryan, J.M.: A method for analysis of stability of flows in ribbed annuli. J. Comput. Phys. 314, 35–59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Orszag, S.A.: Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50, 689–703 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. V. Moradi.

Additional information

Communicated by Sergio Pirozzoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, H.V., Budiman, A.C. & Floryan, J.M. Use of natural instabilities for generation of streamwise vortices in a laminar channel flow. Theor. Comput. Fluid Dyn. 31, 233–250 (2017). https://doi.org/10.1007/s00162-016-0418-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-016-0418-5

Keywords

Navigation