Advanpix Multiprecision Computing Toolbox for MATLAB 3.8.5.9059. Advanpix LLC., Yokohama, Japan (2015)
Benjamin, T.B.: Note on added mass and drift. J. Fluid Mech. 169, 251–256 (1986)
MathSciNet
Article
MATH
Google Scholar
Childress, S.: An Introduction to Theoretical Fluid Mechanics. Courant Lecture Notes in Mathematics. American Mathematical Society, Courant Institute of Mathematical Sciences (2009)
Clerk-Maxwell, J.: On the displacement in a case of fluid motion. Proc. Lond. Math. Soc. 3, 82–87 (1870)
MathSciNet
Google Scholar
Crowdy, D.: Analytical solutions for uniform potential flow past multiple cylinders. Eur. J. Mech. B Fluids 25, 459–470 (2006)
MathSciNet
Article
MATH
Google Scholar
Crowdy, D.: The Schottky–Klein prime function on the Schottky double of planar domains. Comput. Methods Funct. Theory 10(2), 501–517 (2010)
MathSciNet
Article
MATH
Google Scholar
Crowdy, D.G., Marshall, J.S.: Computing the Schottky–Klein prime function on the Schottky double of planar domains. Comput. Methods Funct. Theory 7, 293–308 (2007)
MathSciNet
Article
MATH
Google Scholar
Darwin, C.: Note on hydrodynamics. Math. Proc. Camb. Philos. Soc. 49, 342–354 (1953)
MathSciNet
Article
MATH
Google Scholar
Eames, I.: The concept of drift and its application to multiphase and multibody problems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 361, 2951–2966 (2003)
MathSciNet
Article
MATH
Google Scholar
Eames, I., Belcher, S.E., Hunt, J.C.R.: Drift, partial drift and Darwin’s proposition. J. Fluid Mech. 275, 201–223 (1994)
MathSciNet
Article
MATH
Google Scholar
Föppl, L.: Wirbelbewegung hinter einem Kreiscylinder. Sitzb. d. k. Bayr. Akad. d. Wiss. 1, 1–17 (1913)
MATH
Google Scholar
Johnson, E.R., McDonald, N.R.: The motion of a vortex near two circular cylinders. Proc. R. Soc. Lond. A 460, 939–954 (2004)
MathSciNet
Article
MATH
Google Scholar
Katija, K., Dabiri, J.O.: A viscosity-enhanced mechanism for biogenic ocean mixing. Nature 460, 624–626 (2009)
Article
Google Scholar
Levi-Civita, T.: Scie e leggi di reistenza. Rendiconti del Circolo Matematico di Palermo XXIII, 1–37 (1907)
Article
MATH
Google Scholar
Lin, Z., Thiffeault, J.L., Childress, S.: Stirring by squirmers. J. Fluid Mech. 669, 167–177 (2011)
MathSciNet
Article
MATH
Google Scholar
Lin, Z., Zhang, Y.: Stirring by multi-cylinder in potential flow. ArXiv e-prints (2014)
Melkoumian, S., Protas, B.: Wake effects on drift in two-dimensional inviscid incompressible flows. Phys. Fluids 26, 123,601 (2014)
Article
Google Scholar
Milne-Thomson, L.M.: Theoretical Hydrodynamics. Dover, Mineola (1968)
Book
MATH
Google Scholar
Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)
MATH
Google Scholar
Saffman, P.G.: Vortex Dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1992)
Google Scholar
Thiffeault, J.L.: Distribution of particle displacements due to swimming microorganisms. Phys. Rev. E 92, 023,023 (2015)
Article
Google Scholar
Thiffeault, J.L., Childress, S.: Stirring by swimming bodies. Phys. Lett. A 374, 3487–3490 (2010)
Article
MATH
Google Scholar
Yih, C.S.: New derivations of Darwin’s theorem. J. Fluid Mech. 152, 163–172 (1985)
MathSciNet
Article
MATH
Google Scholar
Yih, C.S.: Evolution of Darwinian drift. J. Fluid Mech. 347, 1–11 (1997)
MathSciNet
Article
MATH
Google Scholar