Skip to main content

Drift due to two obstacles in different arrangements

Abstract

We study the drift induced by the passage of two cylinders through an unbounded extent of inviscid incompressible fluid under the assumption that the flow is two dimensional and steady in the moving frame of reference. The goal is to assess how the resulting total particle drift depends on the parameters of the geometric configuration, namely the distance between the cylinders and their angle with respect to the direction of translation. This problem is studied by numerically computing, for different cylinder configurations, the trajectories of particles starting at various initial locations. The velocity field used in these computations is expressed in closed form using methods of the complex function theory, and the accuracy of calculations is carefully verified. We identify cylinder configurations which result in increased and decreased drift with respect to the reference case when the two cylinders are separated by an infinite distance. Particle trajectories shed additional light on the hydrodynamic interactions between the cylinders in configurations resulting in different drift values. This ensemble of results provides insights about the accuracy of models used to study biogenic transport.

This is a preview of subscription content, access via your institution.

References

  1. Advanpix Multiprecision Computing Toolbox for MATLAB 3.8.5.9059. Advanpix LLC., Yokohama, Japan (2015)

  2. Benjamin, T.B.: Note on added mass and drift. J. Fluid Mech. 169, 251–256 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  3. Childress, S.: An Introduction to Theoretical Fluid Mechanics. Courant Lecture Notes in Mathematics. American Mathematical Society, Courant Institute of Mathematical Sciences (2009)

  4. Clerk-Maxwell, J.: On the displacement in a case of fluid motion. Proc. Lond. Math. Soc. 3, 82–87 (1870)

    MathSciNet  Google Scholar 

  5. Crowdy, D.: Analytical solutions for uniform potential flow past multiple cylinders. Eur. J. Mech. B Fluids 25, 459–470 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  6. Crowdy, D.: The Schottky–Klein prime function on the Schottky double of planar domains. Comput. Methods Funct. Theory 10(2), 501–517 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  7. Crowdy, D.G., Marshall, J.S.: Computing the Schottky–Klein prime function on the Schottky double of planar domains. Comput. Methods Funct. Theory 7, 293–308 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  8. Darwin, C.: Note on hydrodynamics. Math. Proc. Camb. Philos. Soc. 49, 342–354 (1953)

    MathSciNet  Article  MATH  Google Scholar 

  9. Eames, I.: The concept of drift and its application to multiphase and multibody problems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 361, 2951–2966 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  10. Eames, I., Belcher, S.E., Hunt, J.C.R.: Drift, partial drift and Darwin’s proposition. J. Fluid Mech. 275, 201–223 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  11. Föppl, L.: Wirbelbewegung hinter einem Kreiscylinder. Sitzb. d. k. Bayr. Akad. d. Wiss. 1, 1–17 (1913)

    MATH  Google Scholar 

  12. Johnson, E.R., McDonald, N.R.: The motion of a vortex near two circular cylinders. Proc. R. Soc. Lond. A 460, 939–954 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  13. Katija, K., Dabiri, J.O.: A viscosity-enhanced mechanism for biogenic ocean mixing. Nature 460, 624–626 (2009)

    Article  Google Scholar 

  14. Levi-Civita, T.: Scie e leggi di reistenza. Rendiconti del Circolo Matematico di Palermo XXIII, 1–37 (1907)

    Article  MATH  Google Scholar 

  15. Lin, Z., Thiffeault, J.L., Childress, S.: Stirring by squirmers. J. Fluid Mech. 669, 167–177 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  16. Lin, Z., Zhang, Y.: Stirring by multi-cylinder in potential flow. ArXiv e-prints (2014)

  17. Melkoumian, S., Protas, B.: Wake effects on drift in two-dimensional inviscid incompressible flows. Phys. Fluids 26, 123,601 (2014)

    Article  Google Scholar 

  18. Milne-Thomson, L.M.: Theoretical Hydrodynamics. Dover, Mineola (1968)

    Book  MATH  Google Scholar 

  19. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  20. Saffman, P.G.: Vortex Dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  21. Thiffeault, J.L.: Distribution of particle displacements due to swimming microorganisms. Phys. Rev. E 92, 023,023 (2015)

    Article  Google Scholar 

  22. Thiffeault, J.L., Childress, S.: Stirring by swimming bodies. Phys. Lett. A 374, 3487–3490 (2010)

    Article  MATH  Google Scholar 

  23. Yih, C.S.: New derivations of Darwin’s theorem. J. Fluid Mech. 152, 163–172 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  24. Yih, C.S.: Evolution of Darwinian drift. J. Fluid Mech. 347, 1–11 (1997)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Protas.

Additional information

Communicated by Dr. Jeff D. Eldredge.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melkoumian, S., Protas, B. Drift due to two obstacles in different arrangements. Theor. Comput. Fluid Dyn. 30, 529–542 (2016). https://doi.org/10.1007/s00162-016-0394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-016-0394-9

Keywords

  • Drift
  • Wakes
  • Complex function theory