Theoretical and Computational Fluid Dynamics

, Volume 30, Issue 6, pp 529–542 | Cite as

Drift due to two obstacles in different arrangements

Original Article

Abstract

We study the drift induced by the passage of two cylinders through an unbounded extent of inviscid incompressible fluid under the assumption that the flow is two dimensional and steady in the moving frame of reference. The goal is to assess how the resulting total particle drift depends on the parameters of the geometric configuration, namely the distance between the cylinders and their angle with respect to the direction of translation. This problem is studied by numerically computing, for different cylinder configurations, the trajectories of particles starting at various initial locations. The velocity field used in these computations is expressed in closed form using methods of the complex function theory, and the accuracy of calculations is carefully verified. We identify cylinder configurations which result in increased and decreased drift with respect to the reference case when the two cylinders are separated by an infinite distance. Particle trajectories shed additional light on the hydrodynamic interactions between the cylinders in configurations resulting in different drift values. This ensemble of results provides insights about the accuracy of models used to study biogenic transport.

Keywords

Drift Wakes Complex function theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

162_2016_394_MOESM1_ESM.mp4 (214 kb)
Supplementary material 1 (mp4 213 KB)
162_2016_394_MOESM2_ESM.mp4 (177 kb)
Supplementary material 2 (mp4 177 KB)
162_2016_394_MOESM3_ESM.mp4 (180 kb)
Supplementary material 3 (mp4 180 KB)

References

  1. 1.
    Advanpix Multiprecision Computing Toolbox for MATLAB 3.8.5.9059. Advanpix LLC., Yokohama, Japan (2015)Google Scholar
  2. 2.
    Benjamin, T.B.: Note on added mass and drift. J. Fluid Mech. 169, 251–256 (1986)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Childress, S.: An Introduction to Theoretical Fluid Mechanics. Courant Lecture Notes in Mathematics. American Mathematical Society, Courant Institute of Mathematical Sciences (2009)Google Scholar
  4. 4.
    Clerk-Maxwell, J.: On the displacement in a case of fluid motion. Proc. Lond. Math. Soc. 3, 82–87 (1870)MathSciNetGoogle Scholar
  5. 5.
    Crowdy, D.: Analytical solutions for uniform potential flow past multiple cylinders. Eur. J. Mech. B Fluids 25, 459–470 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Crowdy, D.: The Schottky–Klein prime function on the Schottky double of planar domains. Comput. Methods Funct. Theory 10(2), 501–517 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Crowdy, D.G., Marshall, J.S.: Computing the Schottky–Klein prime function on the Schottky double of planar domains. Comput. Methods Funct. Theory 7, 293–308 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Darwin, C.: Note on hydrodynamics. Math. Proc. Camb. Philos. Soc. 49, 342–354 (1953)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Eames, I.: The concept of drift and its application to multiphase and multibody problems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 361, 2951–2966 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Eames, I., Belcher, S.E., Hunt, J.C.R.: Drift, partial drift and Darwin’s proposition. J. Fluid Mech. 275, 201–223 (1994)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Föppl, L.: Wirbelbewegung hinter einem Kreiscylinder. Sitzb. d. k. Bayr. Akad. d. Wiss. 1, 1–17 (1913)MATHGoogle Scholar
  12. 12.
    Johnson, E.R., McDonald, N.R.: The motion of a vortex near two circular cylinders. Proc. R. Soc. Lond. A 460, 939–954 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Katija, K., Dabiri, J.O.: A viscosity-enhanced mechanism for biogenic ocean mixing. Nature 460, 624–626 (2009)CrossRefGoogle Scholar
  14. 14.
    Levi-Civita, T.: Scie e leggi di reistenza. Rendiconti del Circolo Matematico di Palermo XXIII, 1–37 (1907)CrossRefMATHGoogle Scholar
  15. 15.
    Lin, Z., Thiffeault, J.L., Childress, S.: Stirring by squirmers. J. Fluid Mech. 669, 167–177 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lin, Z., Zhang, Y.: Stirring by multi-cylinder in potential flow. ArXiv e-prints (2014)Google Scholar
  17. 17.
    Melkoumian, S., Protas, B.: Wake effects on drift in two-dimensional inviscid incompressible flows. Phys. Fluids 26, 123,601 (2014)CrossRefGoogle Scholar
  18. 18.
    Milne-Thomson, L.M.: Theoretical Hydrodynamics. Dover, Mineola (1968)CrossRefMATHGoogle Scholar
  19. 19.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)MATHGoogle Scholar
  20. 20.
    Saffman, P.G.: Vortex Dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1992)Google Scholar
  21. 21.
    Thiffeault, J.L.: Distribution of particle displacements due to swimming microorganisms. Phys. Rev. E 92, 023,023 (2015)CrossRefGoogle Scholar
  22. 22.
    Thiffeault, J.L., Childress, S.: Stirring by swimming bodies. Phys. Lett. A 374, 3487–3490 (2010)CrossRefMATHGoogle Scholar
  23. 23.
    Yih, C.S.: New derivations of Darwin’s theorem. J. Fluid Mech. 152, 163–172 (1985)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Yih, C.S.: Evolution of Darwinian drift. J. Fluid Mech. 347, 1–11 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Computational Science and EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Department of Mathematics and StatisticsMcMaster UniversityHamiltonCanada

Personalised recommendations