Skip to main content

Computational analysis of vertical axis wind turbine arrays


Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

This is a preview of subscription content, access via your institution.


  1. 1.

    Dabiri, J.: Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. J. Renew. Sustain. Energy 3, 04310-1–04310-12 (2011)

  2. 2.

    Sorenson, V.: Renewable Energy: Its Physics, Engineering, Use, Environmental Impacts, Economy, and Planning Aspects, Elsevier, London (2004)

  3. 3.

    MacKay D.: Sustainable Energy—Without the Hot Air. UIT Cambridge Ltd., Cambridge (2009)

    Google Scholar 

  4. 4.

    Whittlesey, R., Liska, S., and Dabiri, J.: Fish schooling as a basis for vertical-axis wind turbine farm design, Bioinspir. Biomimet., 5 (2010)

  5. 5.

    Paraschivoiu I.: Wind Turbine Design: With Emphasis on Darrieus Concept. Presses inter Polytechnique, Switzerland (2002)

    Google Scholar 

  6. 6.

    Ågren O., Berg M., Leijon M.: A time-dependent potential flow theory for the aerodynamics of vertical axis wind turbines. J. Appl. Phys. 97(10), 104913 (2005)

    Article  Google Scholar 

  7. 7.

    Tsai, H.-C., Colonius, T.: Coriolis effect on dynamic stall in a vertical axis wind turbine at moderate Reynolds number. AIAA J. 54(1), 216–226 (2016)

  8. 8.

    Araya D.B., Craig A.E., Kinzel M., Dabiri J.O.: Low-order modeling of wind farm aerodynamics using leaky Rankine bodies. J. Renew. Sustain. Energy 6(6), 063118 (2014)

    Article  Google Scholar 

  9. 9.

    Rajagopalan R.G., Klimas P.C., Rickerl T.L.: Aerodynamic interference of vertical axis wind turbines. J. Propuls. Power 6(5), 645–653 (1990)

    Article  Google Scholar 

  10. 10.

    Schatzle, P., Klimas, P., and Spahr, H.: Aerodynamic interference between two Darrieus wind turbines, Tech. rep., Sandia Labs., Albuquerque, NM (USA) (1980)

  11. 11.

    Nishino T., Willden R.H.: The efficiency of an array of tidal turbines partially blocking a wide channel. J. Fluid Mech. 708, 596 (2012)

    Article  MATH  Google Scholar 

  12. 12.

    Duraisamy K., Baeder J.: Numerical simulation of the effects of spanwise blowing on wing-tip vortex formation and evolution. J. Aircr. 43(4), 996–1006 (2006)

    Article  Google Scholar 

  13. 13.

    Duraisamy, K., Baeder, J.: High resolution wake capturing methodology for hovering rotor simulations. J. Am. Helicopter Soc. 52(2),110–122 (2007)

  14. 14.

    Aranake, A.C., Lakshminarayan, V.K., and Duraisamy, K.: Assessment of transition model and CFD methodology for wind turbine flows, 42nd AIAA Fluid Dynamics Conference and Exhibit (2012)

  15. 15.

    Aranake A., Lakshminarayan V., Duraisamy K.: Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver. Renew. Energy 75, 818–832 (2015)

    Article  Google Scholar 

  16. 16.

    Turkel E.: Preconditioning Techniques in Computational Fluid Dynamics. Annu. Rev. Fluid Mech. 31, 385–416 (1999)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Spalart, P. and Allmaras, S.: A one-equation turbulence model for aerodynamic flows, AIAA, Aerospace Sciences Meeting and Exhibit, 30 th, Reno, NV (1992)

  18. 18.

    Yang, K., Lakshminarayan, V., and Baeder, J.: Simulation of a Cycloidal Rotor System Using an Overset RANS Solver, American Helicopter Society 66th Annual Forum, Phoenix, AZ (2010)

  19. 19.

    Benedict M., Jarugumilli T., Lakshminarayan V., Chopra I.: Effect of Flow Curvature on Forward Flight Performance of a Micro-Air-Vehicle-Scale Cycloidal-Rotor. AIAA J. 52(6), 1159–1169 (2014)

    Article  Google Scholar 

  20. 20.

    Jarugumilli, T., Lind, A., Benedict, M., Lakshminarayan, V., Jones, A., and Chopra, I.: Experimental and Computational Flow Field Studies of a MAV-scale Cycloidal Rotor in Forward Flight, American Helicopter Society 69th Annual Forum, Phoenix, AZ (2013)

  21. 21.

    Benedict, M., Lakshminarayan, V., Pino, J., and Chopra, I.: Fundamental Understanding of the Physics of a Small-Scale Vertical Axis Wind Turbine with Dynamic Blade Pitching: An Experimental and Computational Approach, 54th AIAA Structural Dynamics, and Materials Conference, Boston, MA (2013)

  22. 22.

    Oler, J., Strickland, J., Im, B., and Graham, G.: Dynamic Stall Regulation of the Darrieus Turbine, Tech. Rep. SAND83-7029, Sandia National Laboratories (1983)

  23. 23.

    Araya D.B., Dabiri J.O.: A comparison of wake measurements in motor-driven and flow-driven turbine experiments. Experiments in Fluids. 56(7), 1–15 (2015)

    Article  Google Scholar 

  24. 24.

    Katz J., Plotkin A.: Low-Speed Aerodynamics. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  25. 25.

    Chan A., Dewey P., Jameson A., Liang C., Smits A.: Vortex suppression and drag reduction in the wake of counter-rotating cylinders. J. Fluid Mech. 679, 343–383 (2011)

    Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to K. Duraisamy.

Additional information

Communicated by M.R. Malik.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bremseth, J., Duraisamy, K. Computational analysis of vertical axis wind turbine arrays. Theor. Comput. Fluid Dyn. 30, 387–401 (2016).

Download citation


  • Vertical axis wind turbines
  • Wind farms
  • Wake interactions