Skip to main content
Log in

Methodological inaccuracies in clinical aortic valve severity assessment: insights from computational fluid dynamic modeling of CT-derived aortic valve anatomy

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Aortic stenosis is the most common valvular heart disease. Assessing the contribution of the valve as a portion to total ventricular load is essential for the aging population. A CT scan for one patient was used to create one in vivo tricuspid aortic valve geometry and assessed with computational fluid dynamics (CFD). CFD simulated the pressure, velocity, and flow rate, which were used to assess the Gorlin formula and continuity equation, current clinical diagnostic standards. The results demonstrate an underestimation of the anatomic orifice area (AOA) by Gorlin formula and overestimation of AOA by the continuity equation, using peak velocities, as would be measured clinically by Doppler echocardiography. As a result, we suggest that the Gorlin formula is unable to achieve the intended estimation of AOA and largely underestimates AOA at the critical low-flow states present in heart failure. The disparity in the use of echocardiography with the continuity equation is due to the variation in velocity profile between the outflow tract and the valve orifice. Comparison of time-averaged orifice areas by Gorlin and continuity with instantaneous orifice areas by planimetry can mask the errors of these methods, which is a result of the assumption that the blood flow is inviscid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOA:

Anatomic orifice area

AS:

Aortic stenosis

AV:

Aortic valve

CAS:

Calcific aortic stenosis

cath:

Cardiac catheterization

CO:

Cardiac output

dP:

Clinical pressure gradient

C c :

Coefficient of contraction

C v :

Coefficient of velocity

CFD:

Computational fluid dynamics

CT:

Computed tomography

echo:

Echocardiography

echo/cont.:

Echocardiography/continuity equation

EOA:

Effective orifice area

ECG:

Electrocardiogram

Q :

Flow rate

C :

Gorlin coefficient

HR:

Heart rate

LV:

Left ventricle

LVOT:

Left ventricular outflow tract

LVP:

Left ventricular pressure

LVV:

Left ventricular volume

MRI:

Magnetic resonance imaging

P :

Pressure

STJ:

Sino-tubular junction

SEP:

Systolic ejection period

TVI:

Time–velocity integral

TAVI:

Transcatheter aortic valve implantation

TEE:

Transesophageal echo

TTE:

Transthoracic echo

US:

Ultrasound

V :

Velocity

VC:

Vena contracta

References

  1. Dill K.E., George E., Abbara S., Cummings K., Francois C.J., Gerhard-Herman M.D., Gornik H.L.: ACR appropriateness criteria imaging for transcatheter aortic valve replacement. J. Am. Coll. Radiol. 10(12), 957–965 (2013)

    Article  Google Scholar 

  2. Gorlin R., Gorlin S.G.: Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. Am. Heart J. 41, 1–29 (1951)

    Article  Google Scholar 

  3. Hatle L., Angelsen B.A., Tromsdal A.: Non-invasive assessment of aortic stenosis by Doppler ultrasound. Br. Heart J. 43, 284–292 (1980)

    Article  Google Scholar 

  4. Loperfido F., Laurenzi F., Gimigliano F., Pennestri F., Biasucci L.M., Vigna C., De Santis F., Favuzzi A., Rossi E., Manzoli U.: A comparison of the assessment of mitral valve area by continuous wave doppler and by cross sectional echocardiography. Br. Heart J. 57, 348–355 (1987)

    Article  Google Scholar 

  5. Otero H.J., Steigner M.L., Rybicki F.J.: The “Post-64” era of coronary CT angiography: understanding new technology from physical principles. Radiol. Clin. N. Am. 47, 79–90 (2009)

    Article  Google Scholar 

  6. Seitz W.S., Furukawa K.: Hydraulic orifice formula for echographic measurement of the mitral valve area in stenosis: application to M-mode echocardiography and correlation with cardiac catheterisation. Br. Heart J. 46, 41–46 (1981)

    Article  Google Scholar 

  7. Zoghbi W.A., Farmer K.L., Soto J.G., Nelson J.G., Quinones M.A.: Accurate non-invasive quantification of stenotic aortic valve area by doppler echocardiography. Circulation 73, 452–459 (1986)

    Article  Google Scholar 

  8. Garcia, D., Kadem, L.: What do you mean by aortic valve area: geometric orifice area, effective orifice area, or gorlin area? J. Heart Valve Dis. 15(5), 601–608 (2006)

  9. Dumesnil J.G., Yoganathan A.P.: Theoretical and practical differences between the Gorlin formula and the continuity equation for calculating aortic and mitral valve areas. Am. J. Cardiol. 67, 1268–1272 (1991)

    Article  Google Scholar 

  10. Saikrishnan N., Kumar G., Sawaya F.J., Lerakis S., Yoganathan A.P.: Accurate assessment of aortic stenosis: a review of diagnostic modalities and hemodynamics. Circulation 129(2), 244–253 (2014)

    Article  Google Scholar 

  11. Saikrishnan N., Yap C.H., Lerakis S., Kumar G., Yoganathan A.P.: Revisiting the Gorlin equation for aortic stenosis—is it correctly used in clinical practice?. Int. J. Cardiol. 168(3), 2881–2883 (2013)

    Article  Google Scholar 

  12. Pasipoularides A., Murgo J.P., Miller J.W., Craig W.E.: Nonobstructive left ventricular ejection pressure gradients in man. Circul. Res. 61(2), 220–227 (1987)

    Article  Google Scholar 

  13. Chambers J.B., Springings D.C., Cochrane T., Allen J., Morris R., Black M.M., Jackson G.: Continuity equation and Gorlin formula compared with directly observed orifice area in native and prosthetic aortic valves. Br. Heart J. 67, 193–199 (1992)

    Article  Google Scholar 

  14. Kadem L., Rieu R., Dumesnil J.G., Durand L.-G., Pibarot P.: Flow-dependent changes in Doppler-derived aortic valve effective orifice area are real and not due to artifact. J. Am. Coll. Cardiol. 47(1), 131–137 (2006)

    Article  Google Scholar 

  15. Utsunomiya H., Yamamoto H., Horiguchi J., Kunita E., Okada T., Yamazato R., Hidaka T., Kihara Y.: Underestimation of aortic valve area in calcified aortic valve disease: effects of left ventricular outflow tract ellipticity. Int. J. Cardiol. 157(3), 347–353 (2012)

    Article  Google Scholar 

  16. Finegold J.A., Manisty C.H., Cecaro F., Sutaria N., Mayet J., Francis D.P.: Choosing between velocity–time-integral ratio and peak velocity ratio for calculation of the dimensionless index (or aortic valve area) in serial follow-up of aortic stenosis. Int. J. Cardiol. 167(4), 1524–1531 (2013)

    Article  Google Scholar 

  17. Kumamaru K.K., Hoppel B.E., Mather R.T., Rybicki F.J.: CT angiography: current technology and clinical use. Radiol. Clin. N. Am. 48, 213–235 (2010)

    Article  Google Scholar 

  18. Chow B.J.W., Kass M., Gagné O., Chen L., Yam Y., Dick A., Wells G.A.: Can differences in corrected coronary opacification measured with computed tomography predict resting coronary artery flow?. J. Am. Coll. Cardiol. 57, 1280–1288 (2011)

    Article  Google Scholar 

  19. Koo B.-K., Erglis A., Doh J.-H., Daniels D.V., Jegere S., Kim H.-S., Dunning A., DeFrance T., Lansky A., Leipsic J., Min J.K.: Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. J. Am. Coll. Cardiol. 58, 1989–1997 (2011)

    Article  Google Scholar 

  20. Rybicki F.J.: Coronary flow dynamics measured by CT angiography. J. Am. Coll. Cardiol. 57, 1989–1990 (2011)

    Article  Google Scholar 

  21. Steigner M.L., Mitsouras D., Whitmore A.G., Otero H.J., Wang C., Buckley O., Levit N.A., Hussain A.Z., Cai T., Mather R.T., Smedby O., DiCarli M.F., Rybicki F.J.: Iodinated contrast opacification gradients in normal coronary arteries imaged with prospectively ECG-gated single heart beat 320-detector row computed tomography. Circul. Cardiovasc. Imaging 3, 179–186 (2010)

    Article  Google Scholar 

  22. Borkin M., Gajos K., Peters A., Mitsouras D., Melchionna S., Rybicki F.J., Feldman C., Pfister H.: Evaluation of artery visualizations for heart disease diagnosis. IEEE Trans. Vis. Comput. Graph. 17, 2479–2488 (2011)

    Article  Google Scholar 

  23. Melchionna S., Bernaschi M., Succi S., Kaxiras E., Rybicki F.J., Mitsouras D., Coskun A.U., Feldman C.: Hydrokinetic approach to large-scale cardiovascular blood flow. Comput. Phys. Commun. 181, 462–472 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rybicki F.J., Melchionna S., Mitsouras D., Coskun A.U., Whitmore A.G., Steigner M., Nallamshetty L., Welt F.G., Bernaschi M., Borkin M., Sircar J., Kaxiras E., Succi S., Stone P.H., Feldman C.L.: Prediction of coronary artery plaque progression and potential rupture from 320-detector row prospectively ECG-gated single heart beat CT angiography: lattice Boltzmann evaluation of endothelial shear stress. Int. J. Cardiovasc. Imaging 25, 289–299 (2009)

    Article  Google Scholar 

  25. LaBounty T.M., Sundaram B., Agarwal P., Armstrong W.A., Kazerooni E.A., Yamada E.: Aortic valve area on 64-MDCT correlates with transesophageal echocardiography in aortic stenosis. Cardiopulm. Imaging 191, 1652–1658 (2008)

    Google Scholar 

  26. John A.S., Dill T., Brandt R.R., Rau M., Ricken W., Bachmann G., Hamm C.W.: Magnetic resonance to assess the aortic valve area in aortic stenosis: how does it compare to current diagnostic standards?. J. Am. Coll. Cardiol. 42, 519–526 (2003)

    Article  Google Scholar 

  27. Abdulla J., Sivertsen J., Kofoed K.F., Alkadhi H., LaBounty T., Abildstrom S.Z., Kober L., Christensen E., Torp-Pedersen C.: Evaluation of aortic valve stenosis by cardiac multi-slice computed tomography compared with echocardiography: a systematic review and meta-analysis. J. Heart Valve Dis. 18, 634–643 (2009)

    Google Scholar 

  28. LaBounty T., Agarwal P.P., Chughtai A., Kazerooni E.A., Wizauer E., Bach D.S.: Hemodynamic and functional assessment of mechanical aortic valves using combined echocardiography and multidetector computed tomography. J. Card. Comput. Tomogr. 3, 161–167 (2009)

    Article  Google Scholar 

  29. Leuprecht A., Perktold K., Kozerke S., Boesiger P.: Combined CFD and MRI study of blood flow in human ascending aorta model. Biorheology 39, 425–429 (2002)

    Google Scholar 

  30. Badano L., Cassottana P., Bertoli D., Carratino L., Lucatti A., Spirito P.: Changes in effective aortic valve area during ejection in adults with aortic stenosis. Am. J. Cardiol. 78, 1023–1028 (1996)

    Article  Google Scholar 

  31. Ropers D., Ropers U., Marwan M., Schepis T., Pfederer T., Wechsel M., Klinghammer L., Flachskampf F.A., Daniel W.G., Achenbach S.: Comparison of dual-source computed tomography for the quantification of the aortic valve area in patients with aortic stenosis versus transthoracic echocardiography and invasive hemodynamic assessment. Am. J. Cardiol. 104, 1561–1567 (2009)

    Article  Google Scholar 

  32. Koch T.M., Reddy B.D., Zilla P., Franz T.: Aortic valve leaflet mechanical properties facilitate. Comput. Methods Biomech. Biomed. Eng. 13(2), 225–234 (2010)

    Article  Google Scholar 

  33. Auricchio F., Conti M., Demertzis S., Morganti S.: Finite element analysis of aortic root dilation: a new procedure to reproduce pathology based on experimental data. Comput. Methods Biomech. Biomed. Eng. 14(10), 875–882 (2011)

    Article  Google Scholar 

  34. Khalife M., Rodriguez D., de Rochefort L., Durand E.: In vitro validation of non-invasive aortic compliance measurements using MRI. Comput. Methods Biomech. Biomed. Eng. 15(Suppl 1), 83–84 (2012)

    Article  Google Scholar 

  35. Chnafa C., Mendez S., Nicoud F., Moreno R., Nottin S., Schuster I.: Image-based patient-specific simulation: a computational modelling of the human left heart haemodynamics. Comput. Methods Biomech. Biomed. Eng. 15(Suppl 1), 74–75 (2012)

    Article  Google Scholar 

  36. Moosavia M.-H., Fatouraeea N., Katoozianb H., Pashaeic A., Camarad O., Frangie A.F.: Numerical simulation of blood flow in the left ventricle and aortic sinus using magnetic resonance imaging and computational fluid dynamics. Comput. Methods Biomech. Biomed. Eng. 17(7), 1–10 (2012)

    Google Scholar 

  37. Krittian S., Schenkel T., Janoske U., Oertel H.: Partitioned fluid–solid coupling for cardiovascular blood flow: validation study of pressure-driven fluid–domain deformation. Ann. Biomed. Eng. 38(8), 2676–2689 (2010)

    Article  Google Scholar 

  38. Auricchio, F., Conti, M., Ferrara, A., Morganti, S., Reali, A.: Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance. Comput. Methods Biomech. Biomed. Eng. 17(3), 277–285 (2014)

  39. Auricchio F., Conti M., Morganti S., Reali A.: Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. Comput. Methods Biomech. Biomed. Eng. 17(3), 1–11 (2013)

    Google Scholar 

  40. Agarwal, R.K., Rifkin, R., Okpara, E., Foote, T., Daiber, J.: Numerical study of pulsatile flow through models of vascular and aortic valve stenoses and assessment of gorlin equation. In: 40th Fluid Dynamics Conference and Exhibit, June 28–July 1, 2010, Chicago, IL, American Institute of Aeronautics and Astronautics, pp. 2010–4733

  41. Garcia D., Pibarot P., Landry C., Allard A., Chayer B., Dumesnil J.G., Durand L.-G.: Estimation of aortic valve effective orifice area by doppler echocardiography: effects of valve inflow shape and flow rate. J. Am. Soc. Echocardiogr. 17(7), 756–765 (2004)

    Article  Google Scholar 

  42. Baumgartner H., Khan S., DeRobertis M., Czer L., Maurer G.: Effect of prosthetic aortic valve design on the Doppler–Catheter gradient correlation: an in vitro study of Normal St, Jude, Medtronic-Hall, Starr-Edwards and Hancock Valves. J. Am. Coll. Cardiol. 19(2), 324–332 (1992)

    Article  Google Scholar 

  43. Bongert, M., Geller, M., Pennekamp, W., Roggenland D., Nicolas, V.: Transient simulation of the blood flow in the thoracic aorta based on MRI-data by fluid–structure-interaction. In: 4th European Conference of the International Federation for Medical and Biological Engineering, Volume 22 of the series IFMBE Proceedings, pp. 2614–2618 (2008)

  44. DeGroff C.G., Shandas R., Valdes-Cruz L.: Analysis of the effect of flow rate on the Doppler continuity equation for stenotic orifice area calculations: a numerical study. Circulation 97(16), 1597–1605 (1998)

    Article  Google Scholar 

  45. Chandra S., Rajamannan N.M., Sucosky P.: Computational assessment of bicuspid aortic valve wall–shear stress: implications for calcific aortic valve disease. Biomech. Model. Mechanobiol. 11(7), 1085–1096 (2012)

    Article  Google Scholar 

  46. Deen W.M.: Analysis of Transport Phenomena. Oxford University Press, New York (1998)

    Google Scholar 

  47. Marcinkowska-Gapinska A., Gapinski J., Elikowski W., Jaroszyk F., Kubisz L.: Comparison of three rheological models of shear flow behavior studied on blood samples from post-infarction patients. Med. Biol. Eng. Comput. 45((9), 837–844 (2007)

    Article  Google Scholar 

  48. Eckmann D.M., Bowers S., Stecker M., Cheung A.T.: Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity. Anesth. Analg. 91(3), 539–545 (2000)

    Article  Google Scholar 

  49. Pries A.R., Neuhaus D., Gaehtgens P.: Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol.-Heart Circul. Physiol. 263(6), H1770–H1778 (1992)

    Google Scholar 

  50. Dille J., De Vleeschouwer M., Boelen E.: The usage of medical images for creating custom FE and CFD models. Adv. Prod. Eng. Manag. 5(2), 117–120 (2010)

    Google Scholar 

  51. Cebral J.R., Mut F., Sforza D., Lohner R., Scrivano E., Lylyk P., Putman C.: Clinical application of image-based CFD for cerebral aneurysms. Int. J. Numer. Methods Biomed. Eng. 27(7), 977–992 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Briand M., Dumesnil J.G., Kadem L., Tongue A.G., Rieu R., Garcia D., Pibarot P.: Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis: implications for diagnosis and treatment. J. Am. Coll. Cardiol. 46(2), 291–298 (2005)

    Article  Google Scholar 

  53. Garcia D., Barenbrug P.J.C., Pibarot P., Dekker A.L.A.J., van der Veen F.H., Maessen J.G., Dumesnil J.G., Durand L.-G.: A ventricular–vascular coupling model in presence of aortic stenosis. Am. J. Physiol.-Heart Circul. Physiol. 288(4), H1874–H1884 (2005)

    Article  Google Scholar 

  54. Westerhof N., Boer C., Lamberts R.R., Sipkema P.: Cross-talk between cardiac muscle and coronary vasculature. Physiol. Rev. 86(4), 1263–1308 (2006)

    Article  Google Scholar 

  55. Gilon D., Cape E.G., Handschumacher M.D., Song J.-K., Solheim J., VanAuker M., King M.E.E., Levine R.A.: Effect of three-dimensional valve shape on the hemodynamics of aortic stenosis: three-dimensional echocardiographic stereolithography and patient studies. J. Am. Coll. Cardiol. 40(8), 1479–1486 (2002)

    Article  Google Scholar 

  56. Bahlmann E., Cramariuc D., Gerdts E., Gohlke-Baerwolf C., Nienaber C.A., Eriksen E., Wachtell K., Chambers J., Kuck K.H., Ray S.: Impact of pressure recovery on echocardiographic assessment of asymptomatic aortic stenosis: a SEAS substudy. JACC: Cardiovasc. Imaging 3(6), 555–562 (2010)

    Google Scholar 

  57. Baumgartner H.: Hemodynamic assessment of aortic stenosis: are there still lessons to learn?. J. Am. Coll. Cardiol. 47(1), 138–140 (2006)

    Article  Google Scholar 

  58. Garcia D., Dumesnil J.G., Durand L.-G., Kadem L., Pibarot P.: Discrepancies between Catheter and Doppler estimates of valve effective orifice area can be predicted from the pressure recovery phenomenon: practical implications with regard to quantification of aortic stenosis severity. J. Am. Coll. Cardiol. 41(3), 435–442 (2003)

    Article  Google Scholar 

  59. Garcia D., Pibarot P., Durand L.-G.: Analytical modeling of the instantaneous pressure gradient across the aortic valve. J. Biomech. 38(6), 1303–1311 (2005)

    Article  Google Scholar 

  60. Baumgartner H.: Aortic stenosis severity: do we need a new concept?. J. Am. Coll. Cardiol. 54(11), 1012–1013 (2009)

    Article  MathSciNet  Google Scholar 

  61. Baumgartner H., Schima H., Tulzer G., Kuhn P.: Effect of stenosis geometry on the Doppler–Catheter gradient relation in vitro: a manifestation of pressure recovery. J. Am. Coll. Cardiol. 21(4), 1018–1025 (1993)

    Article  Google Scholar 

  62. Baumgartner H., Stefenelli T., Niederberger J., Schima H., Maurer G.: “Overestimation” of Catheter gradients by doppler ultrasound in patients with aortic stenosis: a predictable manifestation of pressure recovery. J. Am. Coll. Cardiol. 33(6), 1656–1661 (1999)

    Article  Google Scholar 

  63. Yoganathan A.P., Cape E.G., Sung H.-W., Williams F.P., Jimoh A.: Review of hydrodynamic principles for the cardiologist: applications to the study of blood flow and jets by imaging techniques. J. Am. Coll. Cardiol. 12(5), 1344–1353 (1988)

    Article  Google Scholar 

  64. Garcia D., Camici P.G., Durand L.-G., Rajappan K., Gaillard E., Rimoldi O.E., Pibarot P.: Impairment of coronary flow reserve in aortic stenosis. J. Appl. Physiol. 106(1), 113–121 (2009)

    Article  Google Scholar 

  65. Garcia D., Pibarot P., Dumesnil J.G., Sakr F., Durand L.-G.: Assessment of aortic valve stenosis severity: a new index based on the energy loss concept. Circulation 101(7), 765–771 (2000)

    Article  Google Scholar 

  66. Evin M., Guivier-Curien C., Tanne D., Pibarot P., Rieu R.: Geometrical orifice area compared to effective orifice area of valvular mitral bioprosthesis: in vitro study. Comput. Methods Biomech. Biomed. Eng. 15(sup1), 53–55 (2012)

    Article  Google Scholar 

  67. Otto C.M., Pearlman A.S., Comess K.A., Reamer R.P., Janko C.L., Huntsman L.L.: Determination of the stenotic aortic valve area in adults using doppler echocardiography. J. Am. Coll. Cardiol. 7(3), 509–517 (1986)

    Article  Google Scholar 

  68. Frydrychowicz A., Weigang E., Langer M., Markl M.: Flow-sensitive 3D magnetic resonance imaging reveals complex blood flow alterations in aortic dacron graft repair. Interact. Cardiovasc. Thorac. Surg. 5, 340–342 (2006)

    Article  Google Scholar 

  69. Rybicki F.J., Otero H.J., Steigner M.L., Vorobiof G., Nallamshetty L., Mitsouras D., Ersoy H., Mather R.T., Judy P.F., Cai T., Coyner K., Schultz K., Whitmore A.G., Di Carli M.F.: Initial evaluation of coronary images from 320-detector row computed tomography. Int. J. Cardiovasc. Imaging 24(5), 535–546 (2008)

    Article  Google Scholar 

  70. Hsiao E.M., Rybicki F.J., Steigner M.: CT coronary angiography: 256-slice and 320-detector row scanners. Curr. Cardiol. Rep. 12(1), 68–75 (2010)

    Article  Google Scholar 

  71. Leipsic J., LaBounty T.M., Heilbron B., Min J.K., Mancini G.B.J., Lin F.Y., Taylor C., Dunning A., Earls J.P.: Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. Am. J. Roentgenol. 195(3), 655–660 (2010)

    Article  Google Scholar 

  72. Hachicha Z., Dumesnil J.G., Pibarot P.: Usefulness of the valvuloarterial impedance to predict adverse outcome in asymptomatic aortic stenosis. J. Am. Coll. Cardiol. 54(11), 1003–1011 (2009)

    Article  Google Scholar 

  73. Pibarot P., Dumesnil J.G.: Aortic stenosis: look globally, think globally. J. Am. Coll. Cardiol. Imaging 2(4), 400–403 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yechun Wang.

Additional information

Communicated by Jeff D. Eldredge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traeger, B., Srivatsa, S.S., Beussman, K.M. et al. Methodological inaccuracies in clinical aortic valve severity assessment: insights from computational fluid dynamic modeling of CT-derived aortic valve anatomy. Theor. Comput. Fluid Dyn. 30, 107–128 (2016). https://doi.org/10.1007/s00162-015-0370-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0370-9

Keywords

Navigation