Numerical investigation of fluid–particle interactions for embolic stroke

Abstract

Roughly one-third of all strokes are caused by an embolus traveling to a cerebral artery and blocking blood flow in the brain. The objective of this study is to gain a detailed understanding of the dynamics of embolic particles within arteries. Patient computed tomography image is used to construct a three-dimensional model of the carotid bifurcation. An idealized carotid bifurcation model of same vessel diameters was also constructed for comparison. Blood flow velocities and embolic particle trajectories are resolved using a coupled Euler–Lagrange approach. Blood is modeled as a Newtonian fluid, discretized using the finite volume method, with physiologically appropriate inflow and outflow boundary conditions. The embolus trajectory is modeled using Lagrangian particle equations accounting for embolus interaction with blood as well as vessel wall. Both one- and two-way fluid–particle coupling are considered, the latter being implemented using momentum sources augmented to the discretized flow equations. It was observed that for small-to-moderate particle sizes (relative to vessel diameters), the estimated particle distribution ratio—with and without the inclusion of two-way fluid–particle momentum exchange—were found to be similar. The maximum observed differences in distribution ratio with and without the coupling were found to be higher for the idealized bifurcation model. Additionally, the distribution was found to be reasonably matching the volumetric flow distribution for the idealized model, while a notable deviation from volumetric flow was observed in the anatomical model. It was also observed from an analysis of particle path lines that particle interaction with helical flow, characteristic of anatomical vasculature models, could play a prominent role in transport of embolic particle. The results indicate therefore that flow helicity could be an important hemodynamic indicator for analysis of embolus particle transport. Additionally, in the presence of helical flow, and vessel curvature, inclusion of two-way momentum exchange was found to have a secondary effect for transporting small to moderate embolus particles—and one-way coupling could be used as a reasonable approximation, thereby causing substantial savings in computational resources.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Vasculature Modeling Toolkit (2014)

  2. 2

    Apte S.V., Mahesh K., Lundgren T.: Accounting for finite-size effects in simulations of disperse particle-laden flows. Int. J. Multiph. Flow 34(3), 260–271 (2008)

    Article  Google Scholar 

  3. 3

    Arboix A., Alió J.: Cardioembolic stroke: clinical features, specific cardiac disorders and prognosis. Curr. Cardiol. Rev. 6(3), 150–161 (2010)

    Article  Google Scholar 

  4. 4

    Balachandar S., Eaton J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42(1), 111–133 (2010)

    Article  Google Scholar 

  5. 5

    Berlemont A., Desjonqueres P., Gouesbet G.: Particle Lagrangian simulation in turbulent flows. Int. J. Multiph. Flow 16(1), 19–34 (1990)

    Article  MATH  Google Scholar 

  6. 6

    Bushi D., Grad Y., Einav S., Yodfat O., Nishri B., Tanne D.: Hemodynamic evaluation of embolic trajectory in an arterial bifurcation: an in-vitro experimental model. Stroke 36(12), 2696–2700 (2005)

    Article  Google Scholar 

  7. 7

    Caro C.G., Doorly D.J., Tarnawski M., Scott K.T., Long Q., Dumoulin C.L.: Non-planar curvature and branching of arteries and non-planar type flow. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 452(1944), 185–197 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. 8

    Carr I.A., Nemoto N., Schwartz R.S., Shadden S.C.: Size-dependent predilections of cardiogenic embolic transport. Am. J. Physiol. Heart Circ. Physiol. 305(5), H732–H739 (2013)

    Article  Google Scholar 

  9. 9

    Chung, E.M.L., Hague, J.P., Chanrion, M.: Embolus trajectory through a physical replica of the major cerebral arteries. Stroke 41, 647–652, (2010)

  10. 10

    Elghobashi S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52(4), 309–329 (1994)

    Article  Google Scholar 

  11. 11

    Ericson C.: Real-Time Collision Detection. CRC Press, Boca Raton (2004)

    Google Scholar 

  12. 12

    Fabbri D., Long Q., Das S., Pinelli M.: Computational modelling of emboli travel trajectories in cerebral arteries: influence of microembolic particle size and density. Biomech. Model. Mechanobiol. 13(2), 289–302 (2014)

    Article  Google Scholar 

  13. 13

    Ferziger J.H., Peric M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  14. 14

    Gallo D., Steinman D.A., Bijari P.B., Morbiducci U.: Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. J. Biomech. 45(14), 2398–2404 (2012)

    Article  Google Scholar 

  15. 15

    Grigioni M., Daniele C., Morbiducci U., Del Gaudio C., D’Avenio G., Balducci A., Barbaro V.: A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending. J. Biomech. 38(7), 1375–1386 (2005)

    Article  Google Scholar 

  16. 16

    Haider A., Levenspiel O.: Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 58(1), 63–70 (1989)

    Article  Google Scholar 

  17. 17

    Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  18. 18

    Kim I., Elghobashi S., Sirignano W.A.: On the equation for spherical-particle motion: effect of Reynolds and acceleration numbers. J. Fluid Mech. 367(1), 221–253 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. 19

    Ku D.N.: Blood flow in arteries. Annu. Rev. Fluid Mech. 29(1), 399–434 (1997)

    Article  MathSciNet  Google Scholar 

  20. 20

    Long Q., Xu X.Y., Ariff B., Thom S.A., Hughes A.D., Stanton A.V.: Reconstruction of blood flow patterns in a human carotid bifurcation: a combined CFD and MRI study. J. Magn. Reson. Imaging 11(3), 299–311 (2000)

    Article  Google Scholar 

  21. 21

    Lorenz R., Bock J., Barker A.J., von Knobelsdorff-Brenkenhoff F., Wallis W., Korvink J.G., Bissell M.M., Schulz-Menger J., Markl M.: 4D flow magnetic resonance imaging in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity. Magn. Reson. Med. 71(4), 1542–1553 (2014)

    Article  Google Scholar 

  22. 22

    Macdonald R.L., Kowalczuk A., Johns L.: Emboli enter penetrating arteries of monkey brain in relation to their size. Stroke 26(7), 1247–1250 (1995)

    Article  Google Scholar 

  23. 23

    Maxey M.R., Riley J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883 (1983)

    Article  MATH  Google Scholar 

  24. 24

    Moffatt H.K.: Helicity and singular structures in fluid dynamics. Proc. Natl. Acad. Sci. USA. 111(10), 3663–3670 (2014)

    Article  MathSciNet  Google Scholar 

  25. 25

    Moffatt H.K., Tsinober A.: Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24, 281–312 (1992)

    Article  MathSciNet  Google Scholar 

  26. 26

    Morbiducci U., Gallo D., Ponzini R., Massai D., Antiga L., Montevecchi F.M., Redaelli A.: Quantitative analysis of bulk flow in image-based hemodynamic models of the carotid bifurcation: the influence of outflow conditions as test case. Ann. Biomed. Eng. 38(12), 3688–3705 (2010)

    Article  Google Scholar 

  27. 27

    Morbiducci U., Ponzini R., Rizzo G., Cadioli M., Esposito A., Montevecchi F.M., Redaelli A.: Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10(3), 339–355 (2011)

    Article  Google Scholar 

  28. 28

    Nichols W., O’Rourke M., Vlachopoulos C.: McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. CRC Press, Boca Raton (2011)

    Google Scholar 

  29. 29

    Olufsen, M.S.: Structured tree outflow condition for blood flow in larger systemic arteries. Ame. J. Physiol. Heart Circ. Physiol. 276(36), 257–268, (1999)

  30. 30

    Pollanen M.S.: Behaviour of suspended particles at bifurcations: implications for embolism. Phys. Med. Biol. 36, 397–401 (1991)

    Article  Google Scholar 

  31. 31

    Rapp J.H., Hollenbeck K., Pan X.M.: An experimental model of lacunar infarction: embolization of microthrombi. J. Vasc. Surg. 48(1), 196–200 (2008)

    Article  Google Scholar 

  32. 32

    Sun C., SH Lee J., Zhang M.: Magnetic nanoparticles in mr imaging and drug delivery. Adv. Drug Deliv. Rev. 60(11), 1252–1265 (2008)

    Article  Google Scholar 

  33. 33

    Yushkevich P.A., Piven J., Hazlett H.C., Smith R.G., Ho S., Gee J.C., Gerig G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  34. 34

    Zamir M., Sinclair P., Wonnacott T.H.: Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech. 25(11), 1303–1310 (1992)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Debanjan Mukherjee.

Additional information

Communicated by Rajat Mittal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, D., Padilla, J. & Shadden, S.C. Numerical investigation of fluid–particle interactions for embolic stroke. Theor. Comput. Fluid Dyn. 30, 23–39 (2016). https://doi.org/10.1007/s00162-015-0359-4

Download citation

Keywords

  • Hemodynamics
  • Embolic stroke
  • Fluid–particle coupling
  • Helicity
  • Collision