Skip to main content
Log in

Effect of trabeculae and papillary muscles on the hemodynamics of the left ventricle

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The impact of surface trabeculae and papillary muscles on the hemodynamics of the left ventricle (LV) is investigated using numerical simulations. Simulations of ventricular flow are conducted for two different models of the LV derived from high-resolution cardiac computed tomography (CT) scans using an immersed boundary method-based flow solver. One model comprises a trabeculated left ventricle (TLV) that includes both trabeculae and papillary muscles, while the second model has a smooth left ventricle that is devoid of any of these surface features. Results indicate that the trabeculae and papillary muscles significantly disrupt the vortices that develop during early filling in the TLV model. Large recirculation zones are found to form in the wake of the papillary muscles; these zones enhance the blockage provided by the papillary muscles and create a path for the mitral jet to penetrate deeper into the ventricular apex during diastole. During systole, the trabeculae enhance the apical washout by ‘squeezing’ the flow from the apical region. Finally, the trabeculae enhance viscous dissipation rate of the ventricular flow, but this effect is not significant in the overall power budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TLV:

Trabeculated left ventricle

SLV:

Smooth left ventricle

Q :

Flow rate prescribed to the simulation

ΔV :

Change in ventricular volume (ml)

T c :

Cardiac cycle time (s)

Re:

Reynolds number

Wo:

Womersley number

F E :

Vortex formation number (E-wave)

EF:

Ejection fraction

SV:

Stroke volume

EDV:

End-diastolic volume

U m :

Peak area-averaged velocity through the mitral annulus

D MO :

Diameter of the mitral orifice

A MO :

Area of mitral orifice

p :

Fluid dynamical pressure

u :

Fluid velocity vector field

\({{\omega}}\) :

Out-of-plane vorticity vector field defined as the curl of velocity

References

  1. Pasipoularides, A.: The heart’s vortex: intracardiac blood flow. PMPH-USA (2010)

  2. Boyd M.T., Seward J.B., Tajik A.J., Edwards W.D.: Frequency and location of prominent left ventricular trabeculations at autopsy in 474 normal human hearts: implications for evaluation of mural thrombi by two-dimensional echocardiography. J. Am. Coll. Cardiol. 9(2), 323–326 (1987)

    Article  Google Scholar 

  3. Madu E.C., D’Cruz I.A.: The vital role of papillary muscles in mitral and ventricular function: echocardiographic insights. Clin. Cardiol. 20(2), 93–98 (1997)

    Article  Google Scholar 

  4. Chin T.K., Perloff J.K., Williams R.G., Jue K., Mohrmann R.: Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82(2), 507–513 (1990)

    Article  Google Scholar 

  5. Sedmera D.P., Tomas V., Mauricette T., Robert P., Anderson R.H.: Developmental patterning of the myocardium. Anat. Rec. 258(4), 319–337 (2000)

    Article  Google Scholar 

  6. Lee J. et al.: Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis. PloS one 8(8), e72924 (2013)

    Article  Google Scholar 

  7. Hove J.R., Koster R.W., Forouhar A.S., Acevedo-Bolton G., Fraser S.E., Gharib M.: Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919), 172–177 (2003)

    Article  Google Scholar 

  8. Scherz P.J., Huisken J., Sahai-Hernandez P., Stainier D.Y.R.: High-speed imaging of developing heart valves reveals interplay of morphogenesis and function. Development 135(6), 1179–1187 (2008)

    Article  Google Scholar 

  9. Peshkovsky C., Totong R., Yelon D.: Dependence of cardiac trabeculation on neuregulin signaling and blood flow in zebrafish. Dev. Dyn. 240(2), 446–456 (2011)

    Article  Google Scholar 

  10. Papavassiliu T., Kuhl H.P., Schroder M., Suselbeck T., Bondarenko O., Bohm C.K., Beek A., Hofman M.M.B., van Rossum A.C.: Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging 1. Radiology 236(1), 57–64 (2005)

    Article  Google Scholar 

  11. Fernndez-Golfin C., Pachon M., Corros C., Bustos A., Cabeza B., Ferreiros J., de Isla L.P., Macaya C., Zamorano J.: Left ventricular trabeculae: quantification in different cardiac diseases and impact on left ventricular morphological and functional parameters assessed with cardiac magnetic resonance. J. Cardiovasc. Med. 10(11), 827–833 (2009)

    Article  Google Scholar 

  12. Jacquier, A., Thuny, F., Jop, B., Giorgi, R., Cohen, F., Gaubert, J.-Y., Vidal, V., Bartoli, J.M., Habib, G., Moulin, G.: Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur. Heart J. ehp595 (2010)

  13. Serrani, M., Costantino, M.L., Fumero, R.: The influence of cardiac trabeculae on ventricular mechanics. In: Computing in Cardiology Conference (CinC), 2013, pp. 811–814, Sept. (2013)

  14. Kulp, S., Gao, M., Zhang, S., Qian, Z., Voros, S., Metaxas, D., Axel, L.: Using high resolution cardiac CT data to model and visualize patient-specific interactions between trabeculae and blood flow. In:, Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011, pp. 468-475. Springer (2011)

  15. Baccani B., Domenichini F., Pedrizzetti G., Tonti G.: Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. J. Biomech. 35, 665–671 (2002)

    Article  Google Scholar 

  16. Cheng Y., Oertel H., Schenkel T.: Fluid-structure coupled CFD simulation of the left ventricular flow during filling phase. Ann. Biomed. Eng. 33, 567–576 (2005)

    Article  Google Scholar 

  17. Choi Y.J., Vedula V., Mittal R.: Computational study of the dynamics of a bileaflet mechanical heart valve in the mitral position. Ann. Biomed. Eng. 14(8), 1–13 (2014)

    Google Scholar 

  18. Doenst T., Spiegel K., Reik M., Markl M., Hennig J., Nitzsche S., Beyersdorf F., Oertel H.: Fluid-dynamic modeling of the human left ventricle: methodology and application to surgical ventricular reconstruction. Ann. Thorac. Surg. 87, 1187–1195 (2009)

    Article  Google Scholar 

  19. Domenichini F., Pedrizzetti G., Baccani B.: Three-dimensional filling flow into a model left ventricle. J. Fluid Mech. 539, 179–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pedrizzetti G., Domenichini F., Tonti G.: On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38(3), 769–773 (2010)

    Article  Google Scholar 

  21. Long Q., Merrifield R., Yang G.Z., Xu X.Y., Kilner P.J., Firmin D.N.: The influence of inflow boundary conditions on intra left ventricle flow predictions. J. Biomech. Eng. 125(6), 922–927 (2003)

    Article  Google Scholar 

  22. Seo J.H., Mittal R.: Effect of diastolic flow patterns on the function of the left ventricle. Phys. Fluids 25(11), 110801:1–110801:21 (2013)

    Article  Google Scholar 

  23. Seo J.H., Vedula V., Abraham T., Mittal R.: Multiphysics computational models for cardiac flow and virtual cardiography. Int. J. Numer. Methods Biomed. Eng. 29(8), 850–869 (2013)

    Article  MathSciNet  Google Scholar 

  24. Seo J.-H., Vedula V., Abraham T., Lardo A., Dawoud F., Luo H., Mittal R.: Effect of the mitral valve on diastolic flow patterns. Phys. Fluids 26(12), 121901:1–121901:14 (2014)

    Article  Google Scholar 

  25. Vedula V., Fortini S., Seo J.-H., Querzoli G., Mittal Rajat: Computational modeling and validation of intraventricular flow in a simple model of the left ventricle. Theor. Comput. Fluid Dyn. 28(6), 589–604 (2014)

    Article  Google Scholar 

  26. Zheng X., Seo J.H., Vedula V., Abraham T., Mittal R.: Computational modeling and analysis of intracardiac flows in simple models of left ventricle. Eur. J. Biomech. B Fluids 35, 31–39 (2012)

    Article  MATH  Google Scholar 

  27. Vierendeels J.A., Riemslagh K., Dick E., Verndock P.R.: Computational simulation of intraventricular flow and pressure gradients during diastole. J. Biomech. Eng. 122, 667–674 (2000)

    Article  Google Scholar 

  28. Krittian S., Schenkel T., Janoske U., Oertel H.: Partitioned fluid-solid coupling for cardiovascular blood flow: validation study of pressure-driven fluid-domain deformation. Ann. Biomed. Eng. 38(8), 2676–2689 (2010)

    Article  Google Scholar 

  29. Watanabe H., Sugiura S., Kafuku H., Hisada T.: Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophys. J. 87, 2074–2085 (2004)

    Article  Google Scholar 

  30. Cenedese A., Prete Z.D., Miozzi M., Querzoli G.: A laboratory investigation of the flow in the left ventricle of a human heart with prosthetic, tilting-disk valves. Exp. Fluids 39, 322–335 (2005)

    Article  Google Scholar 

  31. Charonko J.J., Kumar R., Stewart K., Little W.C., Vlachos P.P.: Vortices formed on mitral valve tips aid normal left ventricular filling. Ann. Biomed. Eng. 41(5), 1049–1061 (2013)

    Article  Google Scholar 

  32. Fortini S., Querzoli G., Espa S., Cenedese A.: Three-dimensional structure of the flow inside the left ventricle of the human heart. Exp. Fluids 54(11), 1609:1–1609:9 (2013)

    Article  Google Scholar 

  33. Kheradvar A., Houle H., Pedrizzetti G., Tonti G., Belcik T., Ashraf M., Lindner J.R., Gharib M., Sahn D.: Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23(1), 86–94 (2010)

    Article  Google Scholar 

  34. Mittal R., Dong H., Bozkurttas M., Najjar F.M., Vargas A., von Loebbecke A.: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227, 4825–4852 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Seo J.H., Mittal R.: A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J. Comput. Phys. 230, 7347–7363 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rangayyan R.M.: Biomedical Image Analysis. CRC press-Taylor & Francis group, London (2004)

    Book  Google Scholar 

  37. Le T.B., Sotiropoulos F., Coffey D., Keefe D.: Vortex formation and instability in the left ventricle. Phys. Fluids 24(9), 091110:1–091110:2 (2012)

    Article  Google Scholar 

  38. Chung C.S., Karamanoglu M., Kovacs S.J.: Duration of diastole and its phases as a function of heart rate during supine bicycle exercise. Am. J. Physiol.-Heart Circ. Physiol. 287(5), H2003–H2008 (2004)

    Article  Google Scholar 

  39. Nagueh S.F., Appleton C.P., Gillebert T.C., Marino P.N., Oh J.K., Smiseth O.A., Waggoner A.D., Flachskampf F.A., Pellikka P.A., Evangelisa A.: Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur. J. Echocardiogr. 10(2), 165–193 (2009)

    Article  Google Scholar 

  40. Kovacs S.J. Jr, Barzilai B., Perez J.E.: Evaluation of diastolic function with Doppler echocardiography: the PDF formalism. Am. J. Physiol.-Heart Circ. Physiol. 252(1), H178–H187 (1987)

    Google Scholar 

  41. McGuire A.M., Hagley M.T., Hall A.F., Kovacs S.J.: Relationship of the fourth heart sound to atrial systolic transmitral flow deceleration. Am. J. Physiol.-Heart Circ. Physiol. 272(3), H1527–H1536 (1997)

    Google Scholar 

  42. Taylor T.W., Suga H., Goto Y., Okino H., Yamaguchi T.: The effects of cardiac infarction on realistic three-dimensional left ventricular blood ejection. J. Biomech. Eng. 118(1), 106–110 (1996)

    Article  Google Scholar 

  43. Ranganathan N., Lam J.H.C., Wigle E.D., Silver M.D.: Morphology of the human mitral valve II. The valve leaflets. Circulation 41(3), 459–467 (1970)

    Article  Google Scholar 

  44. Bellhouse B.J.: Fluid mechanics of a mitral valve and left ventricle. Cardiovasc. Res. 6, 199–210 (1972)

    Article  Google Scholar 

  45. Toger J., Kanski M., Carlsson M., Kovacs S.J., Soderlind G., Arheden H., Heiberg E.: Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann. Biomed. Eng. 40, 2652–2662 (2012)

    Article  Google Scholar 

  46. Kilner P.J., Yang G.Z., Wilkes A.J., Mohiaddin R.H., Firmin D.N., Yacoub M.H.: Asymmetric redirection of flow through the heart. Nature 404, 759–761 (2000)

    Article  Google Scholar 

  47. Pedrizzetti G., Domenichini F.: Nature optimizes swirling flow in the human left ventricle. Phys. Rev. Lett. 95, 108101:1–108101:4 (2005)

    Article  Google Scholar 

  48. Mihalef V., Ionasec R.I., Sharma P., Georgescu B., Voigt I., Suehling M., Comaniciu D.: Patient-specific modeling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images. J. Roy. Soc. Int. Focus 1, 286–296 (2011)

    Google Scholar 

  49. Long Q., Merrifield R., Xu X.Y., Kilner P., Firmin D.N., Yang G.Z.: Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 222(4), 475–485 (2008)

    Article  Google Scholar 

  50. Gharib M., Rambod E., Kheradvar A., Sahn D.J., Dabiri J.O.: Optimal vortex formation as an index of cardiac health. Proc. Natl. Acad. Sci. 103(16), 6305–6308 (2006)

    Article  Google Scholar 

  51. Ghias R., Mittal R., Dong H.: A sharp interface immersed boundary method for compressible viscous flows. J. Comput. Phys. 225, 528–553 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zang Y., Street R.L., Koseff J.R.: A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 18–33 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  53. Dong H., Bozkurttas M., Mittal R., Madden P., Lauder G.V.: Computational modeling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. Fluid Mech. 645, 345–373 (2010)

    Article  MATH  Google Scholar 

  54. Zheng L., Hedrick T.L., Mittal R.: A multi-fidelity modeling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight. J. Fluid Mech. 721, 118–154 (2013)

    Article  MATH  Google Scholar 

  55. Zhou J., Adrian R.J., Balachandar S., Kendall T.M.: Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  56. Chakraborty P., Balachandar S., Adrian R.J.: On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189–214 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  57. Watanabe H., Sugiura S., Hisada T.: The looped heart does not save energy by maintaining the momentum of blood flowing in the ventricle. Am. J. Physiol.-Heart Circ. Physiol. 294, H2191–H2196 (2008)

    Article  Google Scholar 

  58. Chnafa C., Mendez S., Nicoud F.: Image-based large-eddy simulation in a realistic left heart. Comput. Fluids 94, 173–187 (2014)

    Article  MathSciNet  Google Scholar 

  59. Sengupta P.P., Pedrizzetti G., Kilner P.J., Kheradvar A., Ebbers T., Tonti G., Fraser A.G., Narula J.: Emerging trends in CV flow visualization. JACC Cardiovasc. Imaging 5(3), 305–316 (2012)

    Article  Google Scholar 

  60. Faludi R., Szulik M., D’hooge J., Herijgers P., Rademakers F., Pedrizzetti G., Voigt J.-U.: Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139(6), 1501–1510 (2010)

    Article  Google Scholar 

  61. Hong G.-R. et al.: Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc. Imaging 1(6), 705–717 (2008)

    Article  Google Scholar 

  62. Lim C.W., Su Y., Yeo S.Y., Ng G.M., Nguyen V.T., Zhong L., San Tan R., Poh K.K., Chai P.: Automatic 4D reconstruction of patient-specific cardiac mesh with 1-to-1 vertex correspondence from segmented contours lines. PloS one 9(4), e93747 (2014)

    Article  Google Scholar 

  63. Dillard S.I., Mousel J.A., Shrestha L., Raghavan M.L., Vigmostad S.C.: From medical images to flow computations without user-generated meshes. Int. J. Numer. Methods Biomed. Eng. 30(10), 1057–1083 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Mittal.

Additional information

Communicated by Jeff D. Eldredge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedula, V., Seo, JH., Lardo, A.C. et al. Effect of trabeculae and papillary muscles on the hemodynamics of the left ventricle. Theor. Comput. Fluid Dyn. 30, 3–21 (2016). https://doi.org/10.1007/s00162-015-0349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0349-6

Keywords

Navigation