Skip to main content
Log in

On the nonnormal–nonlinear interaction mechanism between counter-propagating Rossby waves

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The counter-propagating Rossby wave perspective to shear flow instability is extended here to the weakly nonlinear phase. The nonlinear action at a distance interaction mechanism between a pair of waves is identified and separated from the linear one. In the former, the streamwise velocity converges the far-field vorticity anomaly of the opposed wave, whereas in the latter, the cross-stream velocity advects the far-field mean vorticity. A truncated analytical model of two vorticity interfaces shows that higher harmonics generated by the nonlinear interaction act as a forcing on the nonnormal linear dynamics. Furthermore, an intrinsic positive feedback toward small-scale enstrophy results from the fact that higher harmonic pair of waves are generated in anti-phase configuration which is favored for nonnormal growth. Near marginal stability, the waves preserve their structure and numerical simulations of the weakly nonlinear interaction show wave saturation into finite amplitudes, in good agreement both with the fixed point solution of the truncated model, as well as with its corresponding weakly nonlinear Ginzburg–Landau amplitude equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bretherton F.P.: Baroclinic instability, the short wave cutoff in terms of potential vorticity. Q. J. R. Meteor. Soc. 92, 335–345 (1966)

    Article  Google Scholar 

  2. Hoskins B.J., McIntyre M.E., Robertson A.W.: On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteor. Soc. 111, 877–946 (1985)

    Article  Google Scholar 

  3. Davies H.C., Bishop C.H.: Eady edge waves and rapid development. J. Atmos. Sci. 51, 1930–1946 (1994)

    Article  MathSciNet  Google Scholar 

  4. Bishop C.H., Heifetz E.: Apparent absolute instability and the continuous spectrum. J. Atmos. Sci. 57, 3592 (2000)

    Article  MathSciNet  Google Scholar 

  5. Heifetz E., Bishop C.H., Hoskins B.J., Alpert P.: Counter-propagating Rossby waves in barotropic rayleigh model of shear instability. Q. J. R. Meteor. Soc. 125, 2835–2853 (1999)

    Article  Google Scholar 

  6. Badger J., Hoskins B.J.: Simple initial value problems and mechanisms for baroclinic growth. Q. J. R. Meteor. Soc. 58, 38–49 (2001)

    MathSciNet  Google Scholar 

  7. Heifetz E., Bishop C.H., Hoskins B.J., Methven J.: The counter-propagating Rossby wave perspective on baroclinic instability Part I: mathematical basis. Q. J. R. Meteor. Soc. 130, 211–232 (2004)

    Article  Google Scholar 

  8. de Vries H., Opsteegh J.D.: Optimal perturbations in the Eady model: resonance versus PV unshielding. J. Atmos. Sci. 62, 492–505 (2005)

    Article  Google Scholar 

  9. Røsting B., Kristjánsson J.E.: The usefulness of piecewise potential vorticity inversion. J. Atmos. Sci. 69, 934–941 (2012)

    Article  Google Scholar 

  10. Iga K.: Shear instability as a resonance between neutral waves hidden in a shear flow. J. Fluid Mech. 715, 452–476 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Biancofiore L., Gallaire F.: The influence of shear layer thickness on the stability of confined two dimensional wakes. Phys. Fluids 23, 034103 (2012)

    Article  Google Scholar 

  12. Heifetz E., Methven J.: Relating optimal growth to counter-propagating Rossby waves in shear instability. Phys. Fluids 17, 064107 (2005)

    Article  MathSciNet  Google Scholar 

  13. Pedlosky J.: Finite-amplitude baroclinic waves. J. Atmos. Sci. 27, 15–30 (1970)

    Article  Google Scholar 

  14. Martius O., Schwierz C., Davies H.C.: Tropopause-level waveguides. J. Atmos. Sci. 67, 866–879 (2010)

    Article  Google Scholar 

  15. Majda A.J., Biello J.A.: The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci. 60, 1809–1821 (2003)

    Article  MathSciNet  Google Scholar 

  16. Chelton D.B., Schlax M.G., Samelson R.M., de Szoeke R.A.: Global observations of large oceanic eddies. Geophys. Res. Lett. 34, L15606 (2007)

    Article  Google Scholar 

  17. Lovelace R.V.E., Romanova M.M.: Rossby wave instability in astrophysical discs. Fluid Dyn. Res. 46, 041401 (2014)

    Article  MathSciNet  Google Scholar 

  18. Rayleigh L.: On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. 9, 57–70 (1880)

    MathSciNet  Google Scholar 

  19. Lin S.-J., Pierrehumbert R.T.: Does Ekman Friction suppress baroclinic instability?. J. Atmos. Sci. 45, 2920–2933 (1988)

    Article  Google Scholar 

  20. Antar B.N., Fowlis W.W.: Eigenvalues of a baroclinic stability problem with Ekman damping. J. Atmos. Sci. 37, 1399–1404 (1980)

    Article  Google Scholar 

  21. Dritschel D.: On the stabilization of a two-dimensional vortex strip by adverse shear. J. Fluid Mech. 206, 193–221 (1989)

    Article  MathSciNet  Google Scholar 

  22. Henry D., Ivanov R.: One-dimensional weakly nonlinear model equations for Rossby waves. Discret. Contin. Dyn. Syst. 34, 3025–3034 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Graef F.: Second order nonlinear interactions among Rossby waves. Atmósfera 7, 89–103 (1993)

    Google Scholar 

  24. Vanneste J.: A nonlinear critical layer generated by the interaction of free Rossby waves. J. Fluid Mech. 371, 319–344 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ho C.M., Huerre P.: Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365–422 (1984)

    Article  Google Scholar 

  26. Baggett J.S., Trefethen L.N.: A mostly linear model of transition to turbulence. Phys. Fluids 7, 833 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Umurhan O.M., Regev O.: Hydrodynamic stability of rotationally supported flows: linear and nonlinear 2D shearing box results. Astron. Astrophys. 427, 855–872 (2004)

    Article  MATH  Google Scholar 

  28. Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  29. Vallis G.K.: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  30. Eady E.T.: Long waves and cyclone waves. Tellus 1, 33–52 (1949)

    Article  MathSciNet  Google Scholar 

  31. Charney J.G., Stern M.E.: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci. 19, 159–172 (1962)

    Article  Google Scholar 

  32. Phillips N.A.: The general circulation of the atmosphere: a numerical experiment. Q. J. R. Meteorol. Soc. 82, 535–539 (1956)

    Article  Google Scholar 

  33. Harnik N., Dritschel D.G., Heifetz E.: On the equilibration of asymmetric barotropic instability. Q. J. R. Meteorol. Soc. 140, 2444–2464 (2014)

    Article  Google Scholar 

  34. Dritschel D.G., Scott R.K.: Jet sharpening by turbulent mixing. Philos. Trans. A. Math. Phys. Eng. Sci. 369, 754–770 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rabinovich A., Umurhan O.M., Harnik N., Lott F., Heifetz E.: Vorticity inversion and action-at-a-distance instability in stably stratified shear flow. J. Fluid Mech. 670, 301–325 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talia Tamarin.

Additional information

Communicated by W. Dewar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamarin, T., Heifetz, E., Umurhan, O.M. et al. On the nonnormal–nonlinear interaction mechanism between counter-propagating Rossby waves. Theor. Comput. Fluid Dyn. 29, 205–224 (2015). https://doi.org/10.1007/s00162-015-0346-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0346-9

Keywords

Navigation