Skip to main content
Log in

A numerical study of the hole-tone phenomenon subjected to non-axisymmetric shape perturbations of the jet nozzle

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a numerical analysis of the hole-tone phenomenon (Rayleigh’s bird-call), based on a three-dimensional discrete vortex method. Evaluation of the sound generated by the self-sustained flow oscillations is based on the Powell–Howe theory of vortex sound and a boundary integral/element method. While the fundamental problem can be modeled well under the assumption of axial symmetry, the purpose of employing a full three-dimensional model is to investigate the influence of non-axisymmetric perturbations of the jet on the sound generation (with a view to flow control). Experimentally, such perturbations can be applied at the jet nozzle via piezoelectric or electro-mechanical actuators, placed circumferentially inside the nozzle at its exit. In the mathematical/numerical model, this is simulated by wave motions of a deformable nozzle. Both standing and traveling (rotating) waves are considered. It is shown that a considerable reduction of the sound generation is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashurst W.T., Meiburg E.: Three-dimensional shear layers via vortex dynamics. J. Fluid Mech. 189, 87–116 (1988)

    Article  Google Scholar 

  2. Batchelor G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  3. Casalino D., Diozzi F., Sannino R., Paonessa A.: Aircraft noise reduction technologies: a biographical review. Aerosp. Sci. Technol. 12, 1–17 (2008)

    Article  MATH  Google Scholar 

  4. Chanaud R.C., Powell A.: Some experiments concerning the hole and ring tone. J. Acoust. Soc. Am. 37, 902–911 (1965)

    Article  Google Scholar 

  5. Conte S.D., de Boor C.: Elementary Numerical Analysis. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  6. Cook R.D., Malkus D.S., Plesha M.E.: Concepts and Applications of Finite Element Analysis. Wiley, New York (1989)

    MATH  Google Scholar 

  7. Cortelezzi L., Karagozian A.R.: On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347–373 (2001)

    MATH  MathSciNet  Google Scholar 

  8. Cottet G.-H., Koumoutsakos P.D.: Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  9. Courant R., Hilbert D.: Methods of Mathematical Physics, Vol II. Wiley, New York (1989)

    Book  Google Scholar 

  10. Crighton D.G.: The jet edge-tone feedback cycle; linear theory for the operating stages. J. Fluid Mech. 234, 361–391 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Curle N.: The mechanics of edge-tones. Proc. R. Soc. Lond. A 216, 412–424 (1953)

    Article  Google Scholar 

  12. Fukumoto Y., Kaplanski F.: Global time evolution of an axisymmetric vortex ring at low Reynolds numbers. Phys. Fluids 20, 053103 (2008)

    Article  Google Scholar 

  13. Grace S.M.: Prediction of low-frequency tones produced by flow through a duct with a gap. J. Sound Vib. 229, 859–878 (2000)

    Article  Google Scholar 

  14. Henrywood R.H., Agarwal A.: The aeroacoustics of the steam kettle. Phys. Fluids 25, 107101 (2013)

    Article  Google Scholar 

  15. Holger D.K., Wilson T.A., Beavers G.S.: Fluid mechanics of the edgetone. J. Acoust. Soc. Am. 62, 1116–1128 (1977)

    Article  Google Scholar 

  16. Holmes P., Lumley J.L., Berkooz G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  17. Howe M.S.: Contributions to the theory of aerodynamic sound, with applications to excess jet noise and the theory of the flute. J. Fluid Mech. 71, 625–673 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  18. Howe M.S.: Edge, cavity and aperture tones at very low Mach numbers. J. Fluid Mech. 330, 61–84 (1997)

    Article  MATH  Google Scholar 

  19. Howe M.S.: Acoustics of Fluid–Structure Interactions. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  20. Howe M.S.: Theory of Vortex Sound. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  21. Isaacson E., Keller H.B.: Analysis of Numerical Methods. Dover, New York (1994)

    Google Scholar 

  22. Kambe T., Minota T.: Acoustic wave radiated by head-on collision of two vortex rings. Proc. R. Soc. Lond. A 386, 277–308 (1983)

    Article  Google Scholar 

  23. Kambe T.: Acoustic emissions by vortex motions. J. Fluid Mech. 173, 643–666 (1986)

    Article  MATH  Google Scholar 

  24. Kambe T.: Vortex sound with special reference to vortex rings: theory, computer simulations, and experiments. Int. J. Aeroacoust. 9, 51–89 (2010)

    Article  Google Scholar 

  25. Kasagi N.: Toward smart control of turbulent jet mixing and combustion. JSME Int. J. Ser. B 49, 941–950 (2006)

    Article  Google Scholar 

  26. Katz J., Plotkin A.: Low-Speed Aerodynamics. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  27. Kawai Y., Terai T.: A numerical method for the calculation of transient acoustic scattering from thin rigid plates. J. Sound Vib. 141, 83–96 (1990)

    Article  Google Scholar 

  28. Kellogg O.D.: Foundations of Potential Theory. Dover, New York (1954)

    Google Scholar 

  29. Lakkis I., Ghoniem A.F.: Axisymmetric vortex method for low-Mach number, diffusion-controlled combustion. J. Comput. Phys. 184, 435–475 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lanczos C.: Applied Analysis. Dover, New York (1988)

    Google Scholar 

  31. Langthjem, M.A., Nakano, M.: Numerical simulation of the hole-tone feedback cycle based on the discrete vortex method and the acoustic analogy. In: Proceedings of FEDSM’03, 4th ASME-JSME Joint Fluids Engineering Conference, Honolulu, HI (2003)

  32. Langthjem M.A., Nakano M.: A numerical simulation of the hole-tone feedback cycle based on an axisymmetric discrete vortex method and Curle’s equation. J. Sound Vib. 288, 133–176 (2005)

    Article  MATH  Google Scholar 

  33. Langthjem M.A., Nakano M.: Numerical study of the hole-tone feedback cycle based on an axisymmetric formulation. Fluid Dyn. Res. 42, 015008(1-26) (2010)

    Article  MathSciNet  Google Scholar 

  34. Leonard A.: Computing three-dimensional incompressible flows with vortex elements. Ann. Rev. Fluid Mech. 17, 523–559 (1985)

    Article  Google Scholar 

  35. Lighthill M.J.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211, 564–587 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  36. Majda A.J., Bertozzi A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  37. Martin J.E., Meiburg E.: Numerical investigation of three-dimensionally evolving jets subject to axisymmetric and azimuthal perturbations. J. Fluid Mech. 230, 271–318 (1991)

    Article  MATH  Google Scholar 

  38. Martin J.E., Meiburg E.: Numerical investigation of three-dimensionally evolving jets under helical perturbations. J. Fluid Mech. 243, 457–487 (1992)

    Article  Google Scholar 

  39. Matsuura K., Nakano M.: Direct computation of a hole-tone feedback system at very low Mach numbers. J. Fluid Sci. Technol. 6, 548–561 (2011)

    Article  Google Scholar 

  40. Matsuura K., Nakano M.: A throttling mechanism sustaining a hole-tone feedback system at very low Mach numbers. J. Fluid Mech. 710, 569–605 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Matsuura K., Nakano M.: Disorganization of a hole tone feedback loop by an axisymmetric obstacle on a downstream end plate. J. Fluid Mech. 757, 908–942 (2014)

    Article  Google Scholar 

  42. Meganathan, D., Vakili, E.: An experimental study of acoustic and flow characteristics of hole tones. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 January 2006, Reno, Nev. AIAA 2006-1015 (2006)

  43. Nakano M., Tsuchidoi D., Kohiyama K., Rinoshika A., Shirono K.: Wavelet analysis on behavior of hole-tone self-sustained oscillation of impinging circular air jet subjected to acoustic excitation. J. Vis. Soc. Jpn. 24, 87–90 (2004) (In Japanese)

    Google Scholar 

  44. Naudascher E., Rockwell D.: Flow-Induced Vibrations. Dover, New York (2005)

    Google Scholar 

  45. Nitsche M., Krasny R.: A numerical study of vortex ring formation at the edge of a circular tube. J. Fluid Mech. 276, 139–161 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  46. Nitsche M.: Self-similar shedding of vortex rings. J. Fluid Mech. 435, 397–407 (2001)

    Article  MATH  Google Scholar 

  47. Pikovsky A., Rosenblum M., Kurths J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  48. Powell A.: On the edgetone. J. Acoust. Soc. Am. 33, 395–409 (1961)

    Article  Google Scholar 

  49. Powell A.: Theory of vortex sound. J. Acoust. Soc. Am. 36, 177–195 (1964)

    Article  Google Scholar 

  50. Powell A.: Lord Rayleigh’s foundations of aeroacoustics. J. Acoust. Soc. Am. 98, 1839–1844 (1995)

    Article  Google Scholar 

  51. Rayleigh, Lord: Interference of sound. R. Inst. Proc. xvii, 1–7 (1902); also in: Scientific Papers, Vol. V. Cambridge University Press, Cambridge (1912)

  52. Rayleigh Lord: The Theory of Sound, Vol. II. Dover, New York (1945)

    Google Scholar 

  53. Rivoalen E., Huberson S.: Numerical simulation of axisymmetric viscous flows by means of particle method. J. Comput. Phys. 152, 1–31 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  54. Rockwell D., Naudascher E.: Self-sustained oscillations of impinging free shear layers. Ann. Rev. Fluid Mech. 11, 67–94 (1979)

    Article  Google Scholar 

  55. Rockwell D.: Oscillations of impinging shear layers. AIAA J. 21, 645–664 (1983)

    Article  Google Scholar 

  56. Saffman P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  57. Suzuki H., Kasagi N., Suzuki Y.: Active control of an axisymmetric jet with distributed electromagnetic flap actuators. Exp. Fluids 36, 498–509 (2004)

    Article  Google Scholar 

  58. Terai T.: On calculation of sound fields around three dimensional objects by integral equation methods. J. Sound Vib. 37, 71–100 (1980)

    Article  Google Scholar 

  59. Vaik I., Paal G.: Mode switching and hysteresis in the edge tone. J. Phys. Conf. Ser. 268, 012031 (2011)

    Article  Google Scholar 

  60. Wells V.L., Renaut R.A.: Computing aerodynamically generated noise. Ann. Rev. Fluid Mech. 29, 161–199 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael A. Langthjem.

Additional information

Communicated by J. D. Eldredge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langthjem, M.A., Nakano, M. A numerical study of the hole-tone phenomenon subjected to non-axisymmetric shape perturbations of the jet nozzle. Theor. Comput. Fluid Dyn. 29, 127–153 (2015). https://doi.org/10.1007/s00162-015-0343-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0343-z

Keywords

Navigation