Skip to main content

Nonlinear gravity-wave interactions in stratified turbulence

Abstract

To investigate the dynamics of gravity waves in stratified Boussinesq flows, a model is derived that consists of all three-gravity-wave-mode interactions (the GGG model), excluding interactions involving the vortical mode. The GGG model is a natural extension of weak turbulence theory that accounts for exact three-gravity-wave resonances. The model is examined numerically by means of random, large-scale, high-frequency forcing. An immediate observation is a robust growth of the so-called vertically sheared horizontal flow (VSHF). In addition, there is a forward transfer of energy and equilibration of the nonzero-frequency (sometimes called “fast”) gravity-wave modes. These results show that gravity-wave-mode interactions by themselves are capable of systematic interscale energy transfer in a stratified fluid. Comparing numerical simulations of the GGG model and the full Boussinesq system, for the range of Froude numbers (Fr) considered (0.05 ≤ Fr ≤ 1), in both systems the VSHF is hardest to resolve. When adequately resolved, VSHF growth is more vigorous in the GGG model. Furthermore, a VSHF is observed to form in milder stratification scenarios in the GGG model than the full Boussinesq system. Finally, fully three-dimensional nonzero-frequency gravity-wave modes equilibrate in both systems and their scaling with vertical wavenumber follows similar power-laws. The slopes of the power-laws obtained depend on Fr and approach −2 (from above) at Fr = 0.05, which is the strongest stratification that can be properly resolved with our computational resources.

This is a preview of subscription content, access via your institution.

References

  1. Annenkov S.Y., Shrira V.I.: Role of non-resonant interactions in the evolution of nonlinear random water wave fields. J. Fluid Mech. 561, 181–207 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babin A., Mahalov A., Nicolaenko B.: Singular oscillating limits of stably-stratified 3d Euler and Navier-Stokes equations and ageostrophic wave fronts. In: Norbury, J., Rhoulstone, I. Large-Scale Atmosphere-Ocean Dynamics I, Cambridge University Press, Cambridge (2002)

  3. Babin A., Mahalov A., Nicolaenko B., Zhou Y.: On the asymptotic regimes and the strongly stratified limit of rotating Boussinesq equations. Theor. Comput. Fluid Dyn. 9, 223–251 (1997)

    Article  MATH  Google Scholar 

  4. Bartello P.: Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52, 4410–4428 (1995)

    Article  MathSciNet  Google Scholar 

  5. Bouruet-Aubertot P., Sommeria J., Staquet C.: Breaking of standing internal gravity waves through two-dimensional instabilities. J. Fluid Mech. 285, 265–301 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Embid P.F., Majda A.J.: Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity. Commun. Partial Differ. Eqs. 21(3-4), 619–658 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Embid P.F., Majda A.J.: Low froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers. Geophys. Astrophys. Fluid Dyn. 87(1-2), 1–50 (1998)

    Article  MathSciNet  Google Scholar 

  8. Garrett C., Munk W.: Internal waves in the Ocean. Ann. Rev. Fluid Mech. 11, 339–369 (1979)

    Article  Google Scholar 

  9. Gill A.E.: Atmosphere-Ocean Dynamics. International Geophysics Series. Academic Press, London (1981)

    Google Scholar 

  10. Godeferd F.S., Cambon C.: Detailed investigation of energy transfers in homogeneous stratified turbulence. Phys. Fluids 6, 2084 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Herring J.R., Métais O.: Numerical experiments in forced stably stratified turbulence. J. Fluid Mech. 202, 97–115 (2006)

    Article  Google Scholar 

  12. Hopfinger E.J.: Turbulence in stratified fluids: a review. J. Geophys. Res 92, 5287–5303 (1987)

    Article  Google Scholar 

  13. Janssen P.A.E.M.: Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33, 863–884 (2003)

    Article  MathSciNet  Google Scholar 

  14. Kimura Y., Herring J.R.: Energy spectra of stably stratified turbulence. J. Fluid Mech. 698, 19–50 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kraichnan R.H.: Helical turbulence and absolute equilibrium. J. Fluid Mech. 59, 745–752 (1973)

    Article  MATH  Google Scholar 

  16. Laval J.P., McWilliams J.C., Dubrulle B.: Forced stratified turbulence: successive transitions with Reynolds number. Phys. Rev. E 68(3), 36308 (2003)

    Article  Google Scholar 

  17. Lelong M.P., Riley J.J.: Internal wave-vortical mode interactions in strongly stratified flows. J. Fluid Mech. 232, 1–19 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lien R-C., Muller P.: Normal-mode decomposition of small-scale oceanic motions. J. Phys. Ocenogr. 22, 1583–1595 (1992)

    Article  Google Scholar 

  19. Lilly D.K.: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci. 40, 749–761 (1983)

    Article  Google Scholar 

  20. Lindborg E.: The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207–242 (2006)

    Article  MATH  Google Scholar 

  21. Lindborg E., Brethouwer G.: Stratified turbulence forced in rotational and divergent modes. J. Fluid Mech. 586, 83–108 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lvov Y.V., Polzin K.L., Tabak E.G.: Energy spectra of the ocean’s internal wave field: Theory and observations. Phys. Rev. Lett. 92(12), 128501 (2004)

    Article  Google Scholar 

  23. Lvov Y.V., Polzin K.L., Yokoyama N.: Resonant and near-resonant internal wave interactions. J. Phys. Oceanogr. 42, 669–691 (2011)

    Article  Google Scholar 

  24. Lvov Y.V., Tabak E.G.: Hamiltonian formalism and the Garrett-Munk spectrum of internal waves in the ocean. Phys. Rev. Lett. 87(16), 168501 (2001)

    Article  Google Scholar 

  25. Lvov Y.V., Yokoyama N.: Nonlinear wave–wave interactions in stratified flows: Direct numerical simulations. Phys. D 238, 803–815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Majda A.J.: Introduction to PDEs and Waves for the Atmosphere and Ocean, volume 9 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York (2003)

    Google Scholar 

  27. Maltrud M.E., Vallis G.K.: Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech. 228, 321–342 (1991)

    Google Scholar 

  28. McComas C.H., Bretherton F.P.: Resonant interaction of oceanic internal waves. J. Geophys. Res. 82, 1397–1412 (1977)

    Article  Google Scholar 

  29. Müller P., Holloway G., Henyey F., Pomphrey N.: Nonlinear interactions among internal gravity waves. Rev. Geophys. 24, 493–536 (1986)

    Article  Google Scholar 

  30. Newell A.C.: Rossby wave packet interactions. J. Fluid Mech. 35, 255–271 (1969)

    Article  MATH  Google Scholar 

  31. Pedlosky J.: Geophysical Fluid Dynamics. Springer, New York (1986)

    Google Scholar 

  32. Phillips O.: On the Bolgiano and Lumley-Schur theories of the buoyancy subrange. In: Yaglom, A., Tartarski, V. Atmospheric Turbulence and Radio Wave Propagation, Nauka, Moscow (1965)

  33. Remmel M., Smith L.M.: New Intermediate Models for Rotating Shallow Water and an Investigation of the Preference for Anticyclones. J. Fluid Mech. 635, 321–359 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Remmel M., Sukhatme J., Smith L.M.: Nonlinear inertia-gravity wave-mode interactions in three-dimensional rotating stratified flows. Comm. Math. Sci. 8, 357–376 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Riley J.J., Debruynkops S.M.: Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15, 2047–2059 (2003)

    Article  MathSciNet  Google Scholar 

  36. Riley J.J., Lelong M.P.: Fluid motions in the presence of strong stable stratification. Ann. Rev. Fluid Mech. 32(1), 613–657 (2000)

    Article  MathSciNet  Google Scholar 

  37. Riley, J.J., Metcalfe, R.W., Weissman, M.A.: Direct numerical simulations of homogeneous turbulence in density-stratified fluids. In: AIP Conference Proceedings, vol. 76, p. 79 (1981)

  38. Smith L.M.: Numerical study of two-dimensional stratified turbulence. Contemp. Math. 283, 91 (2001)

    Article  Google Scholar 

  39. Smith L.M., Waleffe F.: Generation of slow, large scales in forced rotating, stratified turbulence. J. Fluid Mech. 451, 145–168 (2002)

    Article  MATH  Google Scholar 

  40. Staquet C., Sommeria J.: Internal gravity waves: from instabilities to turbulence. Ann. Rev. Fluid Mech. 34, 559–593 (2002)

    Article  MathSciNet  Google Scholar 

  41. Sukhatme J., Smith L.M.: Self-similarity in decaying two-dimensional stably stratified adjustment. Phys. Fluids 19, 036603 (2007)

    Article  Google Scholar 

  42. Sukhatme J., Smith L.M.: Vortical and wave modes in 3D rotating stratified flows: random large-scale forcing. Geophys. Astrophys. Fluid Dyn. 102, 437–455 (2008)

    Article  MathSciNet  Google Scholar 

  43. Sutherland B.S.: Internal Gravity Waves. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  44. Thorpe S.: The Turbulent Ocean. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  45. Waite M.L.: Stratified turbulence at the buoyancy scale. Phys. Fluids 23, 066602 (2011)

    Article  Google Scholar 

  46. Waite M.L., Bartello P.: Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281–308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Waite M.L., Bartello P.: Stratified turbulence generated by internal gravity waves. J. Fluid Mech. 546, 313–339 (2005)

    Article  MathSciNet  Google Scholar 

  48. Waite M.L., Bartello P.: The transition from geostrophic to stratified turbulence. J. Fluid Mech. 568, 89–108 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zakharov V.E., L’vov V.S., Falkovich G.: Kolmogorov Spectra of Turbulence 1. Wave turbulence. Springer, Berlin (1992)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Sukhatme.

Additional information

Communicated by R. Klein.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Remmel, M., Sukhatme, J. & Smith, L.M. Nonlinear gravity-wave interactions in stratified turbulence. Theor. Comput. Fluid Dyn. 28, 131–145 (2014). https://doi.org/10.1007/s00162-013-0305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-013-0305-2

Keywords

  • Gravity waves
  • Stratified turbulence
  • Geophysical flows