Anzt, H., Augustin, W., Baumann, M., Bockelmann, H., Gengenbach, T., Hahn, T., Heuveline, V., Ketelaer, E., Lukarski, D., Otzen, A., Ritterbusch, S., Rocker, B., Ronnås, S., Schick, M., Subramanian, C., Weiss, J.P., Wilhelm, F.: Hiflow3—a flexible and hardware-aware parallel finite element package. In: Proceedings of the 9th Workshop on Parallel/High-Performance Object-Oriented Scientific Computing, POOSC ’10, pp. 4:1–4:6. ACM (2010)
Bacon D.P., Ahmad N.N., Boybeyi Z., Dunn T.J., Hall M.S., Lee P.C.S., Sarma R.A., Turner M.D., Waight K.T., Young S.H., Zack J.W.: A dynamically adapting weather and dispersion model: the operational multiscale environment model with grid adaptivity (omega). Mon. Weather Rev. 128(7), 2044–2076 (2000)
Article
Google Scholar
Bangerth W., Rannacher R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser Verlag, Basel (2003)
Book
MATH
Google Scholar
Barros S.R.M., Garcia C.I.: A global semi-implicit semi-Lagrangian shallow-water model on locally refined grids. Mon. Weather Rev. 132(1), 53–65 (2004)
Article
Google Scholar
Bauer, W.: Toward Goal-oriented r-adaptive Models in Geophysical Fluid Dynamics using a Generalized Discretization Approach. Ph.D. thesis, Department of Geosciences, University of Hamburg (2013)
Baumann, M.: Numerical Simulation of Tropical Cyclones using Goal-Oriented Adaptivity. Ph.D. thesis, Karlsruhe Institute of Technology (KIT), Engineering Mathematics and Computing Lab (EMCL) (2011)
Baumann, M., Heuveline, V.: Evaluation of Different Strategies for Goal Oriented Adaptivity in CFD—Part I: The Stationary Case. EMCL Preprint Series (2010)
Beckers M., Clercx H.J.H., van Heijst G.J.F., Verzicco R.: Dipole formation by two interacting shielded monopoles in a stratified fluid. Phys. Fluids 14(2), 704–720 (2002)
Article
MathSciNet
Google Scholar
Behrens J., Bader M.: Efficiency considerations in triangular adaptive mesh refinement. Philos. Trans. R. Soc. Ser. A Math. Phys. Eng. Sci. 367(1907), 4577–4589 (2009)
Article
MATH
MathSciNet
Google Scholar
Behrens J., Rakowsky N., Hiller W., Handorf D., Lauter M., Papke J., Dethloff K.: amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation. Ocean Model. 10(1–2), 171–183 (2005)
Article
Google Scholar
Birchfield G.E.: Numerical prediction of hurricane movement with the use of a fine grid. J. Meteorol. 17(4), 406–414 (1960)
Article
Google Scholar
Bonaventura L., Ringler T.: Analysis of discrete shallow-water models on geodesic Delaunay grids with c-type staggering. Mon. Weather Rev. 133(8), 2351–2373 (2005)
Article
Google Scholar
Brand S.: Interaction of binary tropical cyclones of the western north pacific ocean. J. Appl. Meteorol. 9, 433–441 (1970)
Article
Google Scholar
Budd C.J., Huang W., Russell R.D.: Adaptivity with moving grids. Acta Numerica 18, 111–241 (2009)
Article
MATH
MathSciNet
Google Scholar
Buizza R., Houtekamer P.L., Pellerin G., Toth Z., Zhu Y., Wei M.: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Weather Rev. 133(5), 1076–1097 (2005)
Article
Google Scholar
Carpio Huertas, J.: Duality Methods for Time-Space Adaptivity to Calculate the Numerical Solution of Partial Differential Equations. Ph.D. thesis, Matemática Aplicada a la Ingeniería Industrial / E.T.S.I. Industriales (UPM) (2008)
Cavallo, S.M., Torn, R.D., Snyder, C., Davis, C., Wang, W., Done, J.: Evaluation of the Advanced Hurricane WRF data assimilation system for the 2009 Atlantic hurricane season. Mon. Weather Rev. 141, 523–541 (2012)
Google Scholar
Chen Q., Gunzburger M., Ringler T.: A scale-invariant formulation of the anticipated potential vorticity method. Mon. Weather Rev. 139, 2614–2629 (2011)
Article
Google Scholar
Chevalier, C., Pellegrini, F.: Pt-scotch: A tool for efficient parallel graph ordering. In: 4th International Workshop on Parallel Matrix Algorithms and Applications (PMAA’06), IRISA, Rennes, France (2006)
Davis, C., Holland, G.: Realistic simulations of intense hurricanes with the NCEP/NCAR WRF modeling system. In: 10th International Workshop on Wave Hindcasting and Forecasting and Coastal Hazard Symposium, North Shore, Hawaii (2007)
Dritschel D.G., Waugh D.W.: Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids 4, 1737–1744 (1992)
Article
Google Scholar
Du Q., Gunzburger M.D., Ju L.: Constrained centroidal Voronoi tessellations for surfaces. SIAM J. Sci. Comput. 24(5), 1488–1506 (2002)
Article
MathSciNet
Google Scholar
Du Q., Gunzburger M.D., Ju L.: Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere. Comput. Methods Appl. Mech. Eng. 192(35), 3933–3957 (2003)
Article
MATH
MathSciNet
Google Scholar
Emanuel K.: Tropical cyclones. Annu. Rev. Earth Planet. Sci. 31(1), 75–104 (2003)
Article
Google Scholar
Eriksson K., Estep D., Hansbo P., Johnson C.: Introduction to adaptive methods for differential equations. Acta Numerica 4, 105–158 (1995)
Article
MathSciNet
Google Scholar
Errico R.M., Raeder K.D.: An examination of the accuracy of the linearization of a mesoscale model with moist physics. Q. J. R. Meteorol. Soc. 125(553), 169–195 (1999)
Article
Google Scholar
Fujiwhara S.: The natural tendency towards symmetry of motion and its application as a principle of motion. Q. J. R. Meteorol. Soc. 47, 287–293 (1921)
Article
Google Scholar
Fujiwhara S.: On the growth and decay of vortical systems. Q. J. R. Meteorol. Soc. 49, 75–104 (1923)
Article
Google Scholar
Fujiwhara S.: Short note on the behaviour of two vortices. Proc. Phys. Math. Soc. Japan Ser. 3 13, 106–110 (1931)
Google Scholar
Gassmann A.: Inspection of hexagonal and triangular c-grid discretizations of the shallow water equations. J. Comput. Phys. 230(7), 2706–2721 (2011)
Article
MATH
MathSciNet
Google Scholar
Gassmann A.: A global hexagonal c-grid non-hydrostatic dynamical core (ICON-IAP) designed for energetic consistency. Q. J. R. Meteorol. Soc. 139(670), 152–175 (2013)
Article
Google Scholar
Giraldo F.X., Warburton T.: A nodal triangle-based spectral element method for the shallow water equations on the sphere. J. Comput. Phys. 207, 129–150 (2005)
Article
MATH
MathSciNet
Google Scholar
Harrison E.J., Elsberry R.L.: A method for incorporating nested finite grids in the solution of systems of geophysical equations. J. Atmos. Sci. 29(7), 1235–1245 (1972)
Article
Google Scholar
Heikes R., Randall D.A.: Numerical integration of the shallow-water equations on a twisted icosahedral grid. part ii. a detailed description of the grid and an analysis of numerical accuracy. Mon. Weather Rev. 123(6), 1881–1887 (1995)
Article
Google Scholar
Heinze, T.: An Adaptive Shallow Water Model on the Sphere. PhD thesis, University of Bremen, Germany (2009)
Holland G.J.: Tropical cyclone motion: environmental interaction plus a beta effect. J. Atmos. Sci. 40(2), 328–342 (1983)
Article
Google Scholar
Holland G.J., Dietachmayer G.S.: On the interaction of tropical-cyclone-scale vortices. iii. Continuous barotropic vortices. Q. J. R. Meteorol. Soc. 119, 1381–1398 (1993)
Article
Google Scholar
Jarrell J.D., Brand S., Nicklin D.S.: An analysis of western north pacific tropical cyclone forecast errors. Mon. Weather Rev. 106, 925–937 (1978)
Article
Google Scholar
Jones S.C., Harr P.A., Abraham J., Bosart L.F., Bowyer P.J., Evans J.L., Hanley D.E., Hanstrum B.N., Hart R.E., Lalaurette F., Sinclair M.R., Smith R.K., Thorncroft C.: The extratropical transition of tropical cyclones: forecast challenges, current understanding, and future directions. Weather Forecast. 18, 1052–1092 (2003)
Article
Google Scholar
Karypis G., Kumar V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)
Article
MathSciNet
Google Scholar
Lander M., Holland G.J.: On the interaction of tropical-cyclone-scale vortices. i: observations. Q. J. R. Meteorol. Soc. 119, 1347–1361 (1993)
Article
Google Scholar
Läuter M., Handorf D., Rakowsky N., Behrens J., Frickenhaus S., Best M., Dethloff K., Hiller W.: A parallel adaptive barotropic model of the atmosphere. J. Comput. Phys. 223(2), 609–628 (2007)
Article
MATH
MathSciNet
Google Scholar
Liao G., Anderson D.: A new approach to grid generation. Appl. Anal. Int. J. 44(3), 285–298 (1992)
Article
MATH
MathSciNet
Google Scholar
Liao, G., de la Pena, G., Liao, G.: A deformation method for moving grid generation. In: Proceedings, 8th International Meshing Roundtable, pp. 155–162. South Lake Tahoe, CA, USA (1999)
MacDonald, A.E., Middlecoff, J., Henderson, T., Lee, J.L.: A general method for modeling on irregular grids. Int. J. High Perform. Comput. Appl. 25(4), 392–403 (2011)
Google Scholar
Melander M.V., McWilliams J.C., Zabusky N.J.: Symmetric vortex merger in two dimensions: causes and conditions. J. Fluid Mech. 195, 303–340 (1988)
Article
MATH
MathSciNet
Google Scholar
Molinari J., Vollaro D.: Rapid intensification of a sheared tropical storm. Mon. Weather Rev. 138(10), 3869–3885 (2010)
Article
Google Scholar
Moser J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120(2), 286–294 (1965)
Article
MATH
Google Scholar
Persson P.O.: Mesh size functions for implicit geometries and PDE-based gradient limiting. Eng. Comput. 22, 95–109 (2006)
Article
Google Scholar
Prieto R., McNoldy B.D., Fulton S.R., Schubert W.H.: A classification of binary tropical cyclone—like vortex interactions. Mon. Weather Rev. 131, 2656–2666 (2003)
Article
Google Scholar
Rauser F., Korn P., Marotzke J.: Predicting goal error evolution from near-initial-information: a learning algorithm. J. Comput. Phys. 230(19), 7284–7299 (2011)
Article
MATH
MathSciNet
Google Scholar
Reynolds C.A., Peng M.S., Chen J.H.: Recurving tropical cyclones: singular vector sensitivity and downstream impacts. Mon. Weather Rev. 137, 1320–1337 (2009)
Article
Google Scholar
Ringler T., Ju L., Gunzburger M.: A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations. Ocean Dyn. 58(5-6), 475–498 (2008)
Article
Google Scholar
Ringler T.D., Jacobsen D., Gunzburger M., Ju L., Duda M., Skamarock W.: Exploring a multi-resolution modeling approach within the shallow-water equations. Mon. Weather Rev. 139, 3348–3368 (2011)
Article
Google Scholar
Ringler T.D., Thuburn J., Klemp J.B., Skamarock W.C.: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured c-grids. J. Comput. Phys. 229, 3065–3090 (2010)
Article
MATH
MathSciNet
Google Scholar
Rípodas P., Gassmann A., Förstner J., Majewski D., Giorgetta M., Korn P., Kornblueh L., Wan H., Zängl G., Bonaventura L., Heinze T.: Icosahedral shallow water model (ICOSWM): results of shallow water test cases and sensitivity to model parameters. Geosci. Model Dev. 2(2), 231–251 (2009)
Article
Google Scholar
Ritchie E.A., Holland G.J.: On the interaction of two tropical cyclone scale vortices. ii: discrete vortex patches. Q. J. R Meteorol. Soc. 119, 1363–1379 (1993)
Article
Google Scholar
Schieweck F.: A-stable discontinuous Galerkin-Petrov time discretization of higher order. J. Numer. Math. 18(1), 25–57 (2010)
Article
MATH
MathSciNet
Google Scholar
Semper B., Liao G.: A moving grid finite-element method using grid deformation. Numer. Methods Partial Differ. Equ. 11, 603–615 (1995)
Article
MATH
MathSciNet
Google Scholar
Shin S.E., Han J.Y., Baik J.J.: On the critical separation distance of binary vortices in a nondivergent barotropic atmosphere. J. Meteorol. Soc. Japan 84(5), 853–869 (2006)
Article
Google Scholar
Smith R.K., Ulrich W., Dietachmayer G.: A numerical study of tropical cyclone motion using a barotropic model. I: the role of vortex asymmetries. Q. J. R. Meteorol. Soc. 116(492), 337–362 (1990)
Article
Google Scholar
St-Cyr A., Jablonowski C., Dennis J.M., Tufo H.M., Thomas S.J.: A comparison of two shallow-water models with nonconforming adaptive grids. Mon. Weather Rev. 136(6), 1898–1922 (2008)
Article
Google Scholar
Thuburn J., Ringler T.D., Skamarock W.C., Klemp J.B.: Numerical representation of geostrophic modes on arbitrarily structured c-grids. J. Comput. Phys. 228, 8321–8335 (2009)
Article
MATH
MathSciNet
Google Scholar
Tomita H., Satoh M., Goto K.: An optimization of the icosahedral grid modified by spring dynamics. J. Comput. Phys. 183(1), 307–331 (2002)
Article
MATH
Google Scholar
Valcke S., Verron J.: Interactions of baroclinic isolated vortices: The dominant effect of shielding. J. Phys. Oceanogr. 27(4), 524–541 (1997)
Article
Google Scholar
Walko R.L., Avissar R.: A direct method for constructing refined regions in unstructured conforming triangular-hexagonal computational grids: application to OLAM. Mon. Weather Rev. 139, 3923–3937 (2011)
Article
Google Scholar
Wan, H.: Developing and Testing a Hydrostatic Atmospheric Dynamical Core on Triangular Grids. Ph.D. thesis, Reports on Earth System Science at International Max Planck Research School, Hamburg (2009)
Weller H., Weller H.G., Fournier A.: Voronoi, Delaunay, and block-structured mesh refinement for solution of the shallow-water equations on the sphere. Mon. Weather Rev. 137(12), 4208–4224 (2009)
Article
Google Scholar
White, B.S., McKee, S.A., de Supinski, B.R., Miller, B., Quinlan, D., Schulz, M.: Improving the computational intensity of unstructured mesh applications. In: Proceedings of the 19th Annual International Conference on Supercomputing, ICS ’05, pp. 341–350. ACM, New York, NY, USA (2005)
Williamson D.L., Drake J.B., Hack J.J., Jakob R., Swarztrauber P.N.: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102(1), 211–224 (1992)
Article
MATH
MathSciNet
Google Scholar
Wloka, J.: Partial Differential Equations, engl. ed., reprinted edn. Cambridge University Press Cambridge (1992)