Skip to main content

Simulation of tropical-cyclone-like vortices in shallow-water ICON-hex using goal-oriented r-adaptivity

Abstract

We demonstrate how efficient r-adapted grids for the prediction of tropical cyclone (TC) tracks can be constructed with the help of goal-oriented error estimates. The binary interaction of TCs in a barotropic model is used as a test case. We perform a linear sensitivity analysis for this problem to evaluate the contribution of each grid cell to an error measure correlated with the cyclone positions. This information allows us to estimate the local grid resolution required to minimize the TC position error. An algorithm involving the solution of a Poisson problem is employed to compute how grid points should be moved such that the desired local resolution is achieved. A hexagonal shallow-water version of the next-generation numerical weather prediction and climate model ICON is used to perform model runs on these adapted grids. The results show that for adequately chosen grid adaptation parameters, the accuracy of the track prediction can be maintained even when a coarser grid is used in regions for which the estimated error contribution is low. Accurate track predictions are obtained only when a grid with high resolution consisting of cells with nearly constant size and regular shape covers the part of the domain where the estimated error contribution is large. The number of grid points required to achieve a certain accuracy in the track prediction can be decreased substantially with our approach.

This is a preview of subscription content, access via your institution.

References

  1. Anzt, H., Augustin, W., Baumann, M., Bockelmann, H., Gengenbach, T., Hahn, T., Heuveline, V., Ketelaer, E., Lukarski, D., Otzen, A., Ritterbusch, S., Rocker, B., Ronnås, S., Schick, M., Subramanian, C., Weiss, J.P., Wilhelm, F.: Hiflow3—a flexible and hardware-aware parallel finite element package. In: Proceedings of the 9th Workshop on Parallel/High-Performance Object-Oriented Scientific Computing, POOSC ’10, pp. 4:1–4:6. ACM (2010)

  2. Bacon D.P., Ahmad N.N., Boybeyi Z., Dunn T.J., Hall M.S., Lee P.C.S., Sarma R.A., Turner M.D., Waight K.T., Young S.H., Zack J.W.: A dynamically adapting weather and dispersion model: the operational multiscale environment model with grid adaptivity (omega). Mon. Weather Rev. 128(7), 2044–2076 (2000)

    Article  Google Scholar 

  3. Bangerth W., Rannacher R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser Verlag, Basel (2003)

    Book  MATH  Google Scholar 

  4. Barros S.R.M., Garcia C.I.: A global semi-implicit semi-Lagrangian shallow-water model on locally refined grids. Mon. Weather Rev. 132(1), 53–65 (2004)

    Article  Google Scholar 

  5. Bauer, W.: Toward Goal-oriented r-adaptive Models in Geophysical Fluid Dynamics using a Generalized Discretization Approach. Ph.D. thesis, Department of Geosciences, University of Hamburg (2013)

  6. Baumann, M.: Numerical Simulation of Tropical Cyclones using Goal-Oriented Adaptivity. Ph.D. thesis, Karlsruhe Institute of Technology (KIT), Engineering Mathematics and Computing Lab (EMCL) (2011)

  7. Baumann, M., Heuveline, V.: Evaluation of Different Strategies for Goal Oriented Adaptivity in CFD—Part I: The Stationary Case. EMCL Preprint Series (2010)

  8. Beckers M., Clercx H.J.H., van Heijst G.J.F., Verzicco R.: Dipole formation by two interacting shielded monopoles in a stratified fluid. Phys. Fluids 14(2), 704–720 (2002)

    Article  MathSciNet  Google Scholar 

  9. Behrens J., Bader M.: Efficiency considerations in triangular adaptive mesh refinement. Philos. Trans. R. Soc. Ser. A Math. Phys. Eng. Sci. 367(1907), 4577–4589 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Behrens J., Rakowsky N., Hiller W., Handorf D., Lauter M., Papke J., Dethloff K.: amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation. Ocean Model. 10(1–2), 171–183 (2005)

    Article  Google Scholar 

  11. Birchfield G.E.: Numerical prediction of hurricane movement with the use of a fine grid. J. Meteorol. 17(4), 406–414 (1960)

    Article  Google Scholar 

  12. Bonaventura L., Ringler T.: Analysis of discrete shallow-water models on geodesic Delaunay grids with c-type staggering. Mon. Weather Rev. 133(8), 2351–2373 (2005)

    Article  Google Scholar 

  13. Brand S.: Interaction of binary tropical cyclones of the western north pacific ocean. J. Appl. Meteorol. 9, 433–441 (1970)

    Article  Google Scholar 

  14. Budd C.J., Huang W., Russell R.D.: Adaptivity with moving grids. Acta Numerica 18, 111–241 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Buizza R., Houtekamer P.L., Pellerin G., Toth Z., Zhu Y., Wei M.: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Weather Rev. 133(5), 1076–1097 (2005)

    Article  Google Scholar 

  16. Carpio Huertas, J.: Duality Methods for Time-Space Adaptivity to Calculate the Numerical Solution of Partial Differential Equations. Ph.D. thesis, Matemática Aplicada a la Ingeniería Industrial / E.T.S.I. Industriales (UPM) (2008)

  17. Cavallo, S.M., Torn, R.D., Snyder, C., Davis, C., Wang, W., Done, J.: Evaluation of the Advanced Hurricane WRF data assimilation system for the 2009 Atlantic hurricane season. Mon. Weather Rev. 141, 523–541 (2012)

    Google Scholar 

  18. Chen Q., Gunzburger M., Ringler T.: A scale-invariant formulation of the anticipated potential vorticity method. Mon. Weather Rev. 139, 2614–2629 (2011)

    Article  Google Scholar 

  19. Chevalier, C., Pellegrini, F.: Pt-scotch: A tool for efficient parallel graph ordering. In: 4th International Workshop on Parallel Matrix Algorithms and Applications (PMAA’06), IRISA, Rennes, France (2006)

  20. Davis, C., Holland, G.: Realistic simulations of intense hurricanes with the NCEP/NCAR WRF modeling system. In: 10th International Workshop on Wave Hindcasting and Forecasting and Coastal Hazard Symposium, North Shore, Hawaii (2007)

  21. Dritschel D.G., Waugh D.W.: Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids 4, 1737–1744 (1992)

    Article  Google Scholar 

  22. Du Q., Gunzburger M.D., Ju L.: Constrained centroidal Voronoi tessellations for surfaces. SIAM J. Sci. Comput. 24(5), 1488–1506 (2002)

    Article  MathSciNet  Google Scholar 

  23. Du Q., Gunzburger M.D., Ju L.: Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere. Comput. Methods Appl. Mech. Eng. 192(35), 3933–3957 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Emanuel K.: Tropical cyclones. Annu. Rev. Earth Planet. Sci. 31(1), 75–104 (2003)

    Article  Google Scholar 

  25. Eriksson K., Estep D., Hansbo P., Johnson C.: Introduction to adaptive methods for differential equations. Acta Numerica 4, 105–158 (1995)

    Article  MathSciNet  Google Scholar 

  26. Errico R.M., Raeder K.D.: An examination of the accuracy of the linearization of a mesoscale model with moist physics. Q. J. R. Meteorol. Soc. 125(553), 169–195 (1999)

    Article  Google Scholar 

  27. Fujiwhara S.: The natural tendency towards symmetry of motion and its application as a principle of motion. Q. J. R. Meteorol. Soc. 47, 287–293 (1921)

    Article  Google Scholar 

  28. Fujiwhara S.: On the growth and decay of vortical systems. Q. J. R. Meteorol. Soc. 49, 75–104 (1923)

    Article  Google Scholar 

  29. Fujiwhara S.: Short note on the behaviour of two vortices. Proc. Phys. Math. Soc. Japan Ser. 3 13, 106–110 (1931)

    Google Scholar 

  30. Gassmann A.: Inspection of hexagonal and triangular c-grid discretizations of the shallow water equations. J. Comput. Phys. 230(7), 2706–2721 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gassmann A.: A global hexagonal c-grid non-hydrostatic dynamical core (ICON-IAP) designed for energetic consistency. Q. J. R. Meteorol. Soc. 139(670), 152–175 (2013)

    Article  Google Scholar 

  32. Giraldo F.X., Warburton T.: A nodal triangle-based spectral element method for the shallow water equations on the sphere. J. Comput. Phys. 207, 129–150 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Harrison E.J., Elsberry R.L.: A method for incorporating nested finite grids in the solution of systems of geophysical equations. J. Atmos. Sci. 29(7), 1235–1245 (1972)

    Article  Google Scholar 

  34. Heikes R., Randall D.A.: Numerical integration of the shallow-water equations on a twisted icosahedral grid. part ii. a detailed description of the grid and an analysis of numerical accuracy. Mon. Weather Rev. 123(6), 1881–1887 (1995)

    Article  Google Scholar 

  35. Heinze, T.: An Adaptive Shallow Water Model on the Sphere. PhD thesis, University of Bremen, Germany (2009)

  36. Holland G.J.: Tropical cyclone motion: environmental interaction plus a beta effect. J. Atmos. Sci. 40(2), 328–342 (1983)

    Article  Google Scholar 

  37. Holland G.J., Dietachmayer G.S.: On the interaction of tropical-cyclone-scale vortices. iii. Continuous barotropic vortices. Q. J. R. Meteorol. Soc. 119, 1381–1398 (1993)

    Article  Google Scholar 

  38. Jarrell J.D., Brand S., Nicklin D.S.: An analysis of western north pacific tropical cyclone forecast errors. Mon. Weather Rev. 106, 925–937 (1978)

    Article  Google Scholar 

  39. Jones S.C., Harr P.A., Abraham J., Bosart L.F., Bowyer P.J., Evans J.L., Hanley D.E., Hanstrum B.N., Hart R.E., Lalaurette F., Sinclair M.R., Smith R.K., Thorncroft C.: The extratropical transition of tropical cyclones: forecast challenges, current understanding, and future directions. Weather Forecast. 18, 1052–1092 (2003)

    Article  Google Scholar 

  40. Karypis G., Kumar V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  41. Lander M., Holland G.J.: On the interaction of tropical-cyclone-scale vortices. i: observations. Q. J. R. Meteorol. Soc. 119, 1347–1361 (1993)

    Article  Google Scholar 

  42. Läuter M., Handorf D., Rakowsky N., Behrens J., Frickenhaus S., Best M., Dethloff K., Hiller W.: A parallel adaptive barotropic model of the atmosphere. J. Comput. Phys. 223(2), 609–628 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Liao G., Anderson D.: A new approach to grid generation. Appl. Anal. Int. J. 44(3), 285–298 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  44. Liao, G., de la Pena, G., Liao, G.: A deformation method for moving grid generation. In: Proceedings, 8th International Meshing Roundtable, pp. 155–162. South Lake Tahoe, CA, USA (1999)

  45. MacDonald, A.E., Middlecoff, J., Henderson, T., Lee, J.L.: A general method for modeling on irregular grids. Int. J. High Perform. Comput. Appl. 25(4), 392–403 (2011)

    Google Scholar 

  46. Melander M.V., McWilliams J.C., Zabusky N.J.: Symmetric vortex merger in two dimensions: causes and conditions. J. Fluid Mech. 195, 303–340 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  47. Molinari J., Vollaro D.: Rapid intensification of a sheared tropical storm. Mon. Weather Rev. 138(10), 3869–3885 (2010)

    Article  Google Scholar 

  48. Moser J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120(2), 286–294 (1965)

    Article  MATH  Google Scholar 

  49. Persson P.O.: Mesh size functions for implicit geometries and PDE-based gradient limiting. Eng. Comput. 22, 95–109 (2006)

    Article  Google Scholar 

  50. Prieto R., McNoldy B.D., Fulton S.R., Schubert W.H.: A classification of binary tropical cyclone—like vortex interactions. Mon. Weather Rev. 131, 2656–2666 (2003)

    Article  Google Scholar 

  51. Rauser F., Korn P., Marotzke J.: Predicting goal error evolution from near-initial-information: a learning algorithm. J. Comput. Phys. 230(19), 7284–7299 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  52. Reynolds C.A., Peng M.S., Chen J.H.: Recurving tropical cyclones: singular vector sensitivity and downstream impacts. Mon. Weather Rev. 137, 1320–1337 (2009)

    Article  Google Scholar 

  53. Ringler T., Ju L., Gunzburger M.: A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations. Ocean Dyn. 58(5-6), 475–498 (2008)

    Article  Google Scholar 

  54. Ringler T.D., Jacobsen D., Gunzburger M., Ju L., Duda M., Skamarock W.: Exploring a multi-resolution modeling approach within the shallow-water equations. Mon. Weather Rev. 139, 3348–3368 (2011)

    Article  Google Scholar 

  55. Ringler T.D., Thuburn J., Klemp J.B., Skamarock W.C.: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured c-grids. J. Comput. Phys. 229, 3065–3090 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  56. Rípodas P., Gassmann A., Förstner J., Majewski D., Giorgetta M., Korn P., Kornblueh L., Wan H., Zängl G., Bonaventura L., Heinze T.: Icosahedral shallow water model (ICOSWM): results of shallow water test cases and sensitivity to model parameters. Geosci. Model Dev. 2(2), 231–251 (2009)

    Article  Google Scholar 

  57. Ritchie E.A., Holland G.J.: On the interaction of two tropical cyclone scale vortices. ii: discrete vortex patches. Q. J. R Meteorol. Soc. 119, 1363–1379 (1993)

    Article  Google Scholar 

  58. Schieweck F.: A-stable discontinuous Galerkin-Petrov time discretization of higher order. J. Numer. Math. 18(1), 25–57 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  59. Semper B., Liao G.: A moving grid finite-element method using grid deformation. Numer. Methods Partial Differ. Equ. 11, 603–615 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  60. Shin S.E., Han J.Y., Baik J.J.: On the critical separation distance of binary vortices in a nondivergent barotropic atmosphere. J. Meteorol. Soc. Japan 84(5), 853–869 (2006)

    Article  Google Scholar 

  61. Smith R.K., Ulrich W., Dietachmayer G.: A numerical study of tropical cyclone motion using a barotropic model. I: the role of vortex asymmetries. Q. J. R. Meteorol. Soc. 116(492), 337–362 (1990)

    Article  Google Scholar 

  62. St-Cyr A., Jablonowski C., Dennis J.M., Tufo H.M., Thomas S.J.: A comparison of two shallow-water models with nonconforming adaptive grids. Mon. Weather Rev. 136(6), 1898–1922 (2008)

    Article  Google Scholar 

  63. Thuburn J., Ringler T.D., Skamarock W.C., Klemp J.B.: Numerical representation of geostrophic modes on arbitrarily structured c-grids. J. Comput. Phys. 228, 8321–8335 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  64. Tomita H., Satoh M., Goto K.: An optimization of the icosahedral grid modified by spring dynamics. J. Comput. Phys. 183(1), 307–331 (2002)

    Article  MATH  Google Scholar 

  65. Valcke S., Verron J.: Interactions of baroclinic isolated vortices: The dominant effect of shielding. J. Phys. Oceanogr. 27(4), 524–541 (1997)

    Article  Google Scholar 

  66. Walko R.L., Avissar R.: A direct method for constructing refined regions in unstructured conforming triangular-hexagonal computational grids: application to OLAM. Mon. Weather Rev. 139, 3923–3937 (2011)

    Article  Google Scholar 

  67. Wan, H.: Developing and Testing a Hydrostatic Atmospheric Dynamical Core on Triangular Grids. Ph.D. thesis, Reports on Earth System Science at International Max Planck Research School, Hamburg (2009)

  68. Weller H., Weller H.G., Fournier A.: Voronoi, Delaunay, and block-structured mesh refinement for solution of the shallow-water equations on the sphere. Mon. Weather Rev. 137(12), 4208–4224 (2009)

    Article  Google Scholar 

  69. White, B.S., McKee, S.A., de Supinski, B.R., Miller, B., Quinlan, D., Schulz, M.: Improving the computational intensity of unstructured mesh applications. In: Proceedings of the 19th Annual International Conference on Supercomputing, ICS ’05, pp. 341–350. ACM, New York, NY, USA (2005)

  70. Williamson D.L., Drake J.B., Hack J.J., Jakob R., Swarztrauber P.N.: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102(1), 211–224 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  71. Wloka, J.: Partial Differential Equations, engl. ed., reprinted edn. Cambridge University Press Cambridge (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Bauer.

Additional information

Communicated by R. Klein.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bauer, W., Baumann, M., Scheck, L. et al. Simulation of tropical-cyclone-like vortices in shallow-water ICON-hex using goal-oriented r-adaptivity. Theor. Comput. Fluid Dyn. 28, 107–128 (2014). https://doi.org/10.1007/s00162-013-0303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-013-0303-4

Keywords

  • Binary tropical cyclone interaction
  • Goal-oriented r-adaptivity
  • A posteriori error estimation
  • Geophysical shallow-water equations
  • Hexagonal C-grid model