Convectively coupled wave–environment interactions

  • Samuel N. Stechmann
  • Andrew J. Majda
  • Dmitri Skjorshammer
Original Article

Abstract

In the tropical atmosphere, waves can couple with water vapor and convection to form large-scale coherent structures called convectively coupled waves (CCWs). The effects of water vapor and convection lead to CCW–mean flow interactions that are different from traditional wave–mean flow interactions in many ways. CCW–mean flow interactions are studied here in two types of models: a multiscale model that represents CCW structures in two spatial dimensions directly above the Earth’s equator, and an amplitude model in the form of ordinary differential equations for the CCW and mean flow amplitudes. The amplitude equations are shown to capture the qualitative behavior of the spatially resolved model, including nonlinear oscillations and a Hopf bifurcation as the climatological background wind is varied. Furthermore, an even simpler set of amplitude equations can also capture some of the essential oscillatory behavior, and it is shown to be equivalent to the Duffing oscillator. The basic interaction mechanisms are that the mean flow’s vertical shear determines the preferred propagation direction of the CCW, and the CCWs can drive changes in the mean shear through convective momentum transport, with energy transfer that is sometimes upscale and sometimes downscale. In addition to CCW–mean flow interactions, also discussed are CCW–water vapor interactions, which form the basis of the Madden–Julian Oscillation (MJO) skeleton model of the first two authors. The key parameter of the MJO skeleton model is estimated theoretically and is in agreement with previously conjectured values.

Keywords

Convectively coupled equatorial waves Convective momentum transport Tropical convection Madden–Julian Oscillation Wave–mean flow interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews D.G., McIntyre M.E.: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89(4), 609–646 (1978)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Baldwin M., Gray L., Dunkerton T., Hamilton K., Haynes P., Randel W., Holton J., Alexander M., Hirota I., Horinouchi T., Jones D., Kinnersly J., Marquardt C., Sato K., Takahashi M.: The quasi-biennial oscillation. Rev. Geophys. 39(2), 179–229 (2001)CrossRefGoogle Scholar
  3. 3.
    Barnes G., Sieckman K.: The environment of fast-and slow-moving tropical mesoscale convective cloud lines. Mon. Weather Rev. 112(9), 1782–1794 (1984)CrossRefGoogle Scholar
  4. 4.
    Benedict J., Randall D.: Structure of the Madden-Julian oscillation in the Superparameterized CAM. J. Atmos. Sci. 66(11), 3277–3296 (2009)CrossRefGoogle Scholar
  5. 5.
    Biello J.A., Majda A.J.: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci. 62, 1694–1721 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bourlioux A., Majda A.J.: Theoretical and numerical structure of unstable detonations. Philos. Trans. R. Soc. London A 350, 29–68 (1995)MATHCrossRefGoogle Scholar
  7. 7.
    Bühler O.: Waves and Mean Flows. Cambridge University Press, Cambridge (2009)MATHCrossRefGoogle Scholar
  8. 8.
    Craik A.D.D.: Wave Interactions and Fluid Flows. Cambridge Univ Press, Cambridge (1985)MATHGoogle Scholar
  9. 9.
    Dunkerton T.J., Crum F.X.: Eastward propagating ∼2- to 15-day equatorial convection and its relation to the tropical intraseasonal oscillation. J. Geophys. Res. 100(D12), 25781–25790 (1995)CrossRefGoogle Scholar
  10. 10.
    Grabowski W.W., Moncrieff M.W.: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Q. J. R. Meteorol. Soc. 127, 445–468 (2001)CrossRefGoogle Scholar
  11. 11.
    Guckenheimer J., Mahalov A.: Resonant triad interactions in symmetric systems. Physica D: Nonlinear Phenom. 54(4), 267–310 (1992)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Hendon H.H., Liebmann B.: Organization of convection within the Madden–Julian oscillation. J. Geophys. Res. 99, 8073–8084 (1994). doi:10.1029/94JD00045 CrossRefGoogle Scholar
  13. 13.
    Houze R.A. Jr: Observed structure of mesoscale convective systems and implications for large-scale heating. Q. J. R. Meteorol. Soc. 115(487), 425–461 (1989)CrossRefGoogle Scholar
  14. 14.
    Houze, Jr., R.A.: Mesoscale convective systems. Rev. Geophys. 42:G4003+ (2004). doi:10.1029/2004RG000150 Google Scholar
  15. 15.
    Johnson R.H., Aves S.L., Ciesielski P.E., Keenan T.D.: Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Weather Rev. 133(1), 131–148 (2005)CrossRefGoogle Scholar
  16. 16.
    Khouider B., Han Y., Majda A.J., Stechmann S.N.: Multiscale waves in an MJO background and convective momentum transport feedback. J. Atmos. Sci. 69, 915–933 (2012)CrossRefGoogle Scholar
  17. 17.
    Khouider B., Majda A.J.: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci. 63, 1308–1323 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Khouider B., Majda A.J.: Multicloud models for organized tropical convection: enhanced congestus heating. J. Atmos. Sci. 65, 895–914 (2008)CrossRefGoogle Scholar
  19. 19.
    Khouider B., St-Cyr A., Majda A.J., Tribbia J.: The MJO and convectively coupled waves in a coarse resolution GCM with a simple multicloud parameterization. J. Atmos. Sci. 68, 240–264 (2011)CrossRefGoogle Scholar
  20. 20.
    Kiladis G.N., Straub K.H., Haertel P.T.: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci. 62, 2790–2809 (2005)CrossRefGoogle Scholar
  21. 21.
    Kiladis G.N., Wheeler M.C., Haertel P.T., Straub K.H., Roundy P.E.: Convectively coupled equatorial waves. Rev. Geophys. 47, RG2003 (2009). doi:10.1029/2008RG000266 CrossRefGoogle Scholar
  22. 22.
    Kim D., Sperber K., Stern W., Waliser D., Kang I.S., Maloney E., Wang W., Weickmann K., Benedict J., Khairoutdinov M. et al.: Application of MJO simulation diagnostics to climate models. J. Clim. 22(23), 6413–6436 (2009)CrossRefGoogle Scholar
  23. 23.
    Lau, W.K.M., Waliser, D.E. (eds.): Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Berlin (2005)Google Scholar
  24. 24.
    LeMone M.: Momentum transport by a line of cumulonimbus. J. Atmos. Sci. 40(7), 1815–1834 (1983)CrossRefGoogle Scholar
  25. 25.
    LeMone M., Moncrieff M.: Momentum and mass transport by convective bands: comparisons of highly idealized dynamical models to observations. J. Atmos. Sci. 51(2), 281–305 (1994)CrossRefGoogle Scholar
  26. 26.
    LeMone M., Zipser E., Trier S.: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci. 55(23), 3493–3518 (1998)CrossRefGoogle Scholar
  27. 27.
    Lin J.L., Kiladis G.N., Mapes B.E., Weickmann K.M., Sperber K.R., Lin W., Wheeler M., Schubert S.D., Del Genio A., Donner L.J., Emori S., Gueremy J.F., Hourdin F., Rasch P.J., Roeckner E., Scinocca J.F.: Tropical intraseasonal variability in 14 IPCC AR4 climate models Part I: convective signals. J. Clim. 19, 2665–2690 (2006)CrossRefGoogle Scholar
  28. 28.
    Majda, A.J.: Introduction to PDEs and waves for the atmosphere and ocean. Courant Lecture Notes in Mathematics, vol. 9. American Mathematical Society, Providence (2003)Google Scholar
  29. 29.
    Majda A.J.: New multi-scale models and self-similarity in tropical convection. J. Atmos. Sci. 64, 1393–1404 (2007)CrossRefGoogle Scholar
  30. 30.
    Majda A.J., Biello J.A.: A multiscale model for the intraseasonal oscillation. Proc. Natl. Acad. Sci. USA 101(14), 4736–4741 (2004)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Majda A.J., Stechmann S.N.: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci. 66, 373–392 (2009)CrossRefGoogle Scholar
  32. 32.
    Majda A.J., Stechmann S.N.: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. 106(21), 8417 (2009)CrossRefGoogle Scholar
  33. 33.
    Majda A.J., Stechmann S.N.: Nonlinear dynamics and regional variations in the MJO skeleton. J. Atmos. Sci. 68, 3053–3071 (2011)CrossRefGoogle Scholar
  34. 34.
    Mapes B.: Gregarious tropical convection. J. Atmos. Sci. 50(13), 2026–2037 (1993)CrossRefGoogle Scholar
  35. 35.
    Mapes B.E., Tulich S., Lin J.L., Zuidema P.: The mesoscale convection life cycle: building block or prototype for large-scale tropical waves?. Dyn. Atmos. Oceans 42, 3–29 (2006)CrossRefGoogle Scholar
  36. 36.
    Moncrieff M.W.: Organized convective systems: archetypal dynamical models, mass and momentum flux theory, and parameterization. Q. J. R. Meterol. Soc. 118(507), 819–850 (1992)CrossRefGoogle Scholar
  37. 37.
    Moncrieff M.W., Green J.S.A.: The propagation and transfer properties of steady convective overturning in shear. Q. J. R. Meterol. Soc. 98(416), 336–352 (1972)CrossRefGoogle Scholar
  38. 38.
    Myers D., Waliser D.: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Clim. 16(6), 929–950 (2003)CrossRefGoogle Scholar
  39. 39.
    Nakazawa T.: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meterol. Soc. Jpn. 66(6), 823–839 (1988)Google Scholar
  40. 40.
    Plumb R.A.: The interaction of two internal waves with the mean flow: Implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci. 34, 1847–1858 (1977)CrossRefGoogle Scholar
  41. 41.
    Roundy P., Frank W.: A climatology of waves in the equatorial region. J. Atmos. Sci. 61(17), 2105–2132 (2004)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Ruzmaikin A., Lawrence J., Cadavid C.: A simple model of stratospheric dynamics including solar variability. J. Clim. 16(10), 1593–1600 (2003)CrossRefGoogle Scholar
  43. 43.
    Stechmann S.N., Majda A.J.: Gravity waves in shear and implications for organized convection. J. Atmos. Sci. 66, 2579–2599 (2009)CrossRefGoogle Scholar
  44. 44.
    Stechmann S.N., Majda A.J., Khouider B.: Nonlinear dynamics of hydrostatic internal gravity waves. Theor. Comput. Fluid Dyn. 22, 407–432 (2008)MATHCrossRefGoogle Scholar
  45. 45.
    Straub K.H., Kiladis G.N.: The observed structure of convectively coupled Kelvin waves: comparison with simple models of coupled wave instability. J. Atmos. Sci. 60(14), 1655–1668 (2003)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Takayabu Y.N.: Large-scale cloud disturbances associated with equatorial waves. I: Spectral features of the cloud disturbances. J. Meteorol. Soc. Jpn. 72(3), 433–449 (1994)Google Scholar
  47. 47.
    Takayabu Y.N.: Large-scale cloud disturbances associated with equatorial waves. II: Westward-propagating inertio-gravity waves. J. Meteorol. Soc. Jpn. 72(3), 451–465 (1994)Google Scholar
  48. 48.
    Takayabu Y.N., Lau K.M., Sui C.H.: Observation of a quasi-2-day wave during TOGA COARE. Mon. Weather Rev. 124(9), 1892–1913 (1996)CrossRefGoogle Scholar
  49. 49.
    Tulich S.N., Randall D., Mapes B.: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci. 64, 1210–1229 (2007)CrossRefGoogle Scholar
  50. 50.
    Tung W., Yanai M.: Convective momentum transport observed during the TOGA COARE IOP. Part I: general features. J. Atmos. Sci. 59(11), 1857–1871 (2002)CrossRefGoogle Scholar
  51. 51.
    Tung W., Yanai M.: Convective momentum transport observed during the TOGA COARE IOP. Part II: case studies. J. Atmos. Sci. 59(17), 2535–2549 (2002)CrossRefGoogle Scholar
  52. 52.
    Wheeler M., Kiladis G.N.: Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci. 56(3), 374–399 (1999)CrossRefGoogle Scholar
  53. 53.
    Wheeler M., Kiladis G.N., Webster P.J.: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci. 57(5), 613–640 (2000)CrossRefGoogle Scholar
  54. 54.
    Yanai M., Esbensen S., Chu J.H.: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 30, 611–627 (1973)CrossRefGoogle Scholar
  55. 55.
    Yang G., Hoskins B., Slingo J.: Convectively coupled equatorial waves. Part I: horizontal and vertical structures. J. Atmos. Sci. 64(10), 3406–3423 (2007)CrossRefGoogle Scholar
  56. 56.
    Zhang, C.: Madden–Julian Oscillation. Rev. Geophys. 43, G2003+ (2005). doi:10.1029/2004RG000158

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Samuel N. Stechmann
    • 1
    • 2
  • Andrew J. Majda
    • 3
  • Dmitri Skjorshammer
    • 4
  1. 1.Department of Mathematics, and Department of Atmospheric and Oceanic SciencesUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Department of Mathematics, and Department of Atmospheric and Oceanic SciencesUniversity of Wisconsin–MadisonMadisonUSA
  3. 3.Department of Mathematics, and Center for Atmosphere–Ocean Science, Courant InstituteNew York UniversityNew YorkUSA
  4. 4.Department of MathematicsHarvey Mudd CollegeClaremontUSA

Personalised recommendations