Skip to main content
Log in

Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate boundary layer

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This article deals with the linear dynamics of a transitional boundary layer subject to two-dimensional Tollmien–Schlichting instabilities. We consider a flat plate including the leading edge, characterized by a Reynolds number based on the length of the plate equal to Re = 6 × 105, inducing a displacement thickness-based Reynolds number of 1,332 at the end of the plate. The global linearized Navier–Stokes equations only display stable eigenvalues, and the associated eigen-vectors are known to poorly represent the dynamics of such open flows. Therefore, we resort to an input–output approach by considering the singular value decomposition of the global resolvent. We then obtain a series of singular values, an associated orthonormal basis representing the forcing (the so-called optimal forcings) as well as an orthonormal basis representing the response (the so-called optimal responses). The objective of this paper is to analyze these spatial structures and to closely relate their spatial downstream evolution to the Orr and Tollmien–Schlichting mechanisms. Analysis of the spatio-frequential diagrams shows that the optimal forcings and responses are respectively localized, for all frequencies, near the upstream neutral point (branch I) and the downstream neutral point (branch II). It is also shown that the spatial growth of the dominant optimal response favorably compares with the e N method in regions where the dominant optimal forcing is small. Moreover, thanks to an energetic input–output approach, it is shown that this spatial growth is solely due to intrinsic amplifying mechanisms related to the Orr and Tollmien–Schlichting mechanisms, while the spatial growth due to the externally supplied power by the dominant optimal forcing is negligible even in regions where the dominant optimal forcing is strong. The energetic input–output approach also yields a general method to assess the strength of the instability in amplifier flows. It is based on a ratio comparing two quantities of same physical dimension, the mean-fluctuating kinetic energy flux of the dominant optimal response across some boundary and the supplied mean external power by the dominant optimal forcing. For the present boundary-layer flow, we have computed this amplification parameter for each frequency and discussed the results with respect to the Orr and Tollmien–Schlichting mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huerre P., Rossi M.: Hydrodynamic instabilities in open flows. In: Godrèche, C., Manneville, P. (eds) Hydrodynamics and Nonlinear Instabilities, pp. 81–294. Cambridge University Press, Cambridge, UK (1998)

    Chapter  Google Scholar 

  2. Zebib A.: Stability of a viscous flow past a circular cylinder. J. Eng. Math. 21(2), 155–165 (1987)

    Article  Google Scholar 

  3. Jackson C.P.: A finite-element study of the onset of vortex shedding in flow past variously-shaped bodies. J. Fluid Mech. 182, 23–45 (1987)

    Article  MATH  Google Scholar 

  4. Provansal M., Mathis C., Boyer L.: Benard-Von Karman instability—transient and forced regimes. J. Fluid Mech. 182, 1–22 (1987)

    Article  MATH  Google Scholar 

  5. Sipp D., Lebedev A.: Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333–358 (2007). doi:10.1017/S0022112007008907

    Article  MATH  Google Scholar 

  6. Chomaz J.M.: Global instabilities in spatially developing flows: non-normality and nonlinearity. Ann. Rev. Fluid Mech. 37, 357 (2005)

    Article  MathSciNet  Google Scholar 

  7. Marquet O., Lombardi M., Chomaz J.M., Sipp D., Jacquin L.: Direct and adjoint global modes of a recirculation bubble: lift-up and convective non-normalities. J. Fluid Mech. 622, 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Trefethen L.N., Trefethen A.E., Reddy S.C., Driscoll T.A.: Hydrodynamic stability without eigenvalues. Science 261(5121), 578–584 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schmid P.J.: Nonmodal stability theory. Ann. Rev. Fluid Mech. 39, 129–162 (2007)

    Article  Google Scholar 

  10. Marquet O., Sipp D., Chomaz J.M., Jacquin L.: Amplifier and resonator dynamics of a low-Reynolds-number recirculation bubble in a global framework. J. Fluid Mech. 605, 429 (2008)

    Article  MATH  Google Scholar 

  11. Blackburn H.M., Barkley D., Sherwin S.J.: Convective instability and transient growth in flow over a backward-facing step. J. Fluid Mech. 603, 271 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cantwell C.D., Barkley D.: Computational study of subcritical response in flow past a circular cylinder. Phys. Rev. E 82(2, part 2), 026315 (2010)

    Article  Google Scholar 

  13. Cantwell C.D., Barkley D., Blackburn H.M.: Transient growth analysis of flow through a sudden expansion in a circular pipe. Phys. Fluids 22(3), 034101 (2010)

    Article  Google Scholar 

  14. Schmid P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farrell B., Ioannou P.: Optimal excitation of three-dimensional perturbations perturbations in viscous constant shear-flow. Phys. Fluids A 5(6), 2600 (1993)

    Article  MATH  Google Scholar 

  16. Alizard F., Robinet J.C.: Spatially convective global modes in a boundary layer. Phys. Fluids 19(11), 114105 (2007)

    Article  Google Scholar 

  17. Akervik E., Ehrenstein U., Gallaire F., Henningson D.S.: Global two-dimensional stability measures of the flat plate boundary-layer flow. Eur. J. Mech. B-Fluids 27(5), 501 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Alizard F., Cherubini S., Robinet J.C.: Sensitivity and optimal forcing response in separated boundary layer flows. Phys. Fluids 21(6), 064108 (2009)

    Article  Google Scholar 

  19. Sipp D., Marquet O., Meliga O., Barbagallo A.: Dynamics and control of global instabilities in open flows: a linearized approach. Appl. Mech. Rev. 63, 030801 (2010)

    Article  Google Scholar 

  20. Monokrousos A., Akervik E., Brandt L., Henningson D.: Global three-dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers. J. Fluid Mech. 650, 181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ehrenstein U., Gallaire F.: On two-dimensional temporal modes in spatially evolving open flows: the flat-plate boundary layer. J. Fluid Mech. 536, 209 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Farrell B.: Optimal excitation of perturbations in viscous shear-flow. Phys. Fluids 31(8), 2093–2102 (1988)

    Article  Google Scholar 

  23. Lopez J., Marques F., Rubio A., Avila M.: Crossflow instability of finite bödewadt flows: transients and spiral waves. Phys. Fluids 21, 114107 (2009)

    Article  Google Scholar 

  24. Do Y., Lopez J., Marques F.: Optimal harmonic response in a confined bödewadt boundary layer flow. Phys. Rev. E 82, 036301 (2010)

    Article  Google Scholar 

  25. Bewley T.R.: Flow control: new challenges for a new renaissance. Prog. Aerosp. Sci. 37(1), 21–58 (2001)

    Article  Google Scholar 

  26. Jiménez, J.: Localized amplification of energy in turbulent channels. Center for Turbulence Research, Annual Research Briefs (2009)

  27. Lehoucq R.B., Sorensen D.C.: Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl. 17(4), 789–821 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Amestoy P.R., Duff I.S., Koster J., L’Excellent J.Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gaster M.: On the effects of boundary-layer growth on flow stability. J. Fluid Mech. 66, 465–480 (1974)

    Article  MATH  Google Scholar 

  30. Drazin P., Reid W.: Hydrodynamic Stability. Cambridge University Press, Cambridge, UK (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Sipp.

Additional information

Communicated by T. Colonius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipp, D., Marquet, O. Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate boundary layer. Theor. Comput. Fluid Dyn. 27, 617–635 (2013). https://doi.org/10.1007/s00162-012-0265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-012-0265-y

Keywords

Navigation