Comparison of dynamical cores for NWP models: comparison of COSMO and Dune

  • Slavko Brdar
  • Michael Baldauf
  • Andreas Dedner
  • Robert Klöfkorn
Original Article

Abstract

We present a range of numerical tests comparing the dynamical cores of the operationally used numerical weather prediction (NWP) model COSMO and the university code Dune, focusing on their efficiency and accuracy for solving benchmark test cases for NWP. The dynamical core of COSMO is based on a finite difference method whereas the Dune core is based on a Discontinuous Galerkin method. Both dynamical cores are briefly introduced stating possible advantages and pitfalls of the different approaches. Their efficiency and effectiveness is investigated, based on three numerical test cases, which require solving the compressible viscous and non-viscous Euler equations. The test cases include the density current (Straka et al. in Int J Numer Methods Fluids 17:1–22, 1993), the inertia gravity (Skamarock and Klemp in Mon Weather Rev 122:2623–2630, 1994), and the linear hydrostatic mountain waves of (Bonaventura in J Comput Phys 158:186–213, 2000).

Keywords

Compressible flow Euler Navier–Stokes Discontinuous Galerkin Finite differences Density current Inertia gravity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad N., Lindeman J.: Euler solutions using flux-based wave decomposition. Int. J. Numer. Methods Fluids 54, 41–72 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arnold D., Brezzi F., Cockburn B., Marini L.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Baldauf M.: Stability analysis for linear discretisations of the advection equation with Runge-Kutta time integration. J. Comput. Phys. 227, 6638–6659 (2008)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Baldauf, M.: A linear solution for flow over mountains and its comparison with the COSMO model. COSMO-Newsletter 9, 19–24 (2008). http://www.cosmo-model.org/content/model/documentation/newsLetters/
  5. 5.
    Baldauf M.: Linear stability analysis of Runge-Kutta based partial time-splitting schemes for the Euler equations. Mon. Weather Rev. 138, 4475–4496 (2010)CrossRefGoogle Scholar
  6. 6.
    Baldauf M., Seifert A., Förstner J., Majewski D., Raschendorfer M., Reinhardt T.: Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon. Weather Rev. 139(12), 3887–3905 (2011)CrossRefGoogle Scholar
  7. 7.
    Bastian P., Blatt M., Dedner A., Engwer C., Klöfkorn R., Kornhuber R., Ohlberger M., Sander O.: A generic grid interface for parallel and adaptive scientific computing. II: implementation and tests in dune. Computing 82, 121–138 (2008)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bastian P., Blatt M., Dedner A., Engwer C., Klöfkorn R., Ohlberger M., Sander O.: A generic grid interface for parallel and adaptive scientific computing. I: abstract framework. Computing 82, 103–119 (2008)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bonaventura L.: A semi-implicit semi-Lagrangian scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric flows. J. Comput. Phys. 158, 186–213 (2000)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Botta N., Klein R., Langenberg S., Lützenkirchen S.: Well balanced finite volume methods for nearly hydrostatic flows. J. Comput. Phys. 196, 539–565 (2003)CrossRefGoogle Scholar
  11. 11.
    Brdar S., Dedner A., Klöfkorn R.: Compact and stable Discontinuous Galerkin methods for convection-diffusion problems. SIAM J. Sci. Comput. 34(1), 263–282 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cockburn, B., Hou, S., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54, 545–581 (1990)Google Scholar
  13. 13.
    Cockburn B., Lin S.Y., Shu C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Cockburn B., Shu C.W.: Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Colonius T.: Modeling artificial boundary conditions for compressible flow. Ann. Rev. Fluid Mech. 36, 315–345 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dedner, A.: Solving the system of Radiation Magnetohydrodynamics : for solar physical simulations in 3d. Ph.D. thesis, Universität Freiburg (2003)Google Scholar
  17. 17.
    Dedner A., Klöfkorn R.: A generic stabilization approach for higher order Discontinuous Galerkin methods for convection dominated problems. J. Sci. Comput. 47(3), 365–388 (2011)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Dedner, A., Klöfkorn, R., Nolte, M., and Ohlberger, M.: A generic interface for parallel and adaptive scientific computing: Abstraction principles and the dune-fem module. Computing 90(3–4), 165–196 (2010)Google Scholar
  19. 19.
    Feistauer, M., Kučera, V.: A new technique for the numerical solution of the compressible Euler equations with arbitrary Mach numbers. In: Benzoni-Gavage, S. et al. (ed.) Hyperbolic problems. Theory, numerics and applications. Proceedings of the 11th International Conference on Hyperbolic Problems, Ecole Normale Supérieure, Lyon, France, July 17–21, 2006. Springer, Berlin, pp. 523–531 (2008)Google Scholar
  20. 20.
    Giraldo F.X., Restelli M.: A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: equations sets and test cases. J. Comput. Phys. 227, 3849–3877 (2008)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Giraldo F., Restelli M., Läuter M.: Semi-implicit formulations of the Euler equations: Application to nonhydrostatic atmospheric modeling. SIAM J. Sci. Comput. 32, 3394–3425 (2010)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Gross E.S., Bonaventura L., Rosatti G.: Consistency with continuity in conservative advection schemes for free-surface models. Int. J. Numer. Methods Fluids 38, 307–327 (2002)MATHCrossRefGoogle Scholar
  23. 23.
    Gottlieb S., Shu C.-W., Tadmor E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Guermond, J.L., Pasquetti, R., Popov, B.: Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230(11), 4248–4267 (2011) (Special issue high order methods for CFD problems)Google Scholar
  25. 25.
    Hu F.Q.: Absorbing boundary conditions (a review). J. Comput. Fluid Dyn. 18(6), 513–522 (2004)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Klein R.: Asymptotics, structure, and integration of sound-proof atmospheric flow equations. Theor. Comput. Fluid Dyn. 23, 161–195 (2009)MATHCrossRefGoogle Scholar
  27. 27.
    Klemp J.B., Lilly D.K.: Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci. 35, 78–107 (1978)CrossRefGoogle Scholar
  28. 28.
    Krivodonova L., Berger M.: High-order accurate implementation of solid wall boundary conditions in curved geometries. J. Comput. Phys. 211(2), 492–512 (2006)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Kröner D.: Numerical Schemes for Conservation Laws. Wiley & Teubner, Stuttgart (1997)MATHGoogle Scholar
  30. 30.
    Leonard B.P., Lock A.P., MacVean M.K.: Conservative explicit unrestricted-time step multidimensional constancy-preserving advection schemes. Mon. Weather Rev. 124, 2588–2606 (1996)CrossRefGoogle Scholar
  31. 31.
    Lin S., Rood R.B.: Multidimensional flux-form semi-Langrangian transport schemes. Mon. Weather Rev. 125, 32–46 (1996)Google Scholar
  32. 32.
    Nance L.B., Durran D.R.: A comparison of the accuracy of three anelastic systems and the pseudo-incompressible system. J. Atmos. Sci. 52(24), 3549–3565 (1994)CrossRefGoogle Scholar
  33. 33.
    Restelli M., Giraldo F.X.: A conservative discontinuous Galerkin semi-implicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling. SIAM J. Sci. Comput. 31(3), 2231–2257 (2009)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Skamarock W.C., Klemp J.B.: Efficiency and accuracy of the Klemp-Wilhelmson time-splitting technique. Mon. Weather Rev. 122, 2623–2630 (1994)CrossRefGoogle Scholar
  35. 35.
    Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Baker, D.M., Wang, W., Powers, J.G.: A Description of the Advances Research WRF Version 2. NCAR Technical Note NCART/TN-468+STR (2007)Google Scholar
  36. 36.
    Skamarock W.C., Weisman M.L.: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Weather Rev. 137, 488–494 (2009)CrossRefGoogle Scholar
  37. 37.
    Steppeler J., Doms G., Schättler U., Bitzer H.W., Gassmann A., Damrath U., Gregoric G.: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol. Atmos. Phys. 82, 75–96 (2003)CrossRefGoogle Scholar
  38. 38.
    Straka J.M., Wilhelmson R.B., Wicker L.J., Anderson J.R., Droegemeier K.K.: Numerical solutions of a non-linear density current: a benchmark solution and comparison. Int. J. Numer. Methods Fluids 17, 1–22 (1993)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Toro E.F.: Riemann solvers and numerical methods for fluid dynamics. A practical introduction. 2nd edn. Springer, Berlin (1999)MATHCrossRefGoogle Scholar
  40. 40.
    Wicker L.J., Skamarock W.C.: Time splitting methods for elastic models using forward time schemes. Mon. Weather Rev. 130, 2088–2097 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Slavko Brdar
    • 1
  • Michael Baldauf
    • 2
  • Andreas Dedner
    • 3
  • Robert Klöfkorn
    • 4
  1. 1.Section of Applied MathematicsUniversity of FreiburgFreiburg in BreisgauGermany
  2. 2.Deutscher Wetterdienst (DWD)Offenbach am MainGermany
  3. 3.Warwick Mathematical InstituteCoventryUK
  4. 4.Institut für Angewandte Analysis und Numerische Simulation (IANS)University of StuttgartStuttgartGermany

Personalised recommendations