Skip to main content
Log in

Wall shape effects on multiphase flow in channels

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Two-fluid flow is examined analytically and numerically for increased flow rates through a channel with surface roughness or branching or both. The viscosity and density ratios of the fluids are of order unity. There is much concern in terms of applications as well as fluid dynamical phenomena in configurations where one fluid is present only as a thin layer near an outer wall, leaving the other fluid occupying the channel core and part of a viscous wall layer. The interactive dynamics in both regions is studied and numerical and asymptotic analyses are performed. The major situations examined are: the flow to two symmetrically bifurcating daughters and the flow in a single channel over a rough wall, as well as a combination of the two situations. The principal phenomena of interest are conditions for flow reversal, the presence of upstream influence and the trajectories of the injected fluid as the density or viscosity ratio varies. Special relatively thin or thinning wall layers are produced when the core fluid viscosity increases or when the fluid travels downstream into a daughter vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balásházy I.: Simulation of particle trajectories in bifurcating tubes. J. Comput. Phys. 110, 11–22 (1994)

    Article  MATH  Google Scholar 

  2. Baroud C.N., Tsikata S., Heil M.: The propagation of low-viscosity fingers into fluid-filled branching networks. J. Fluid Mech 546, 285–294 (2006)

    Article  MATH  Google Scholar 

  3. Blyth M.G., Mestel A.J.: Steady flow in a dividing pipe. J. Fluid Mech. 401, 339–364 (1999)

    Article  MATH  Google Scholar 

  4. Brotherton Ratcliffe, R.V.: PhD thesis University of London (1986)

  5. Carlson A., Do Quang M., Amberg G.: Droplet dynamics in a bifurcating channel. Int. J. Multiphase Flow 36, 397–405 (2010)

    Article  Google Scholar 

  6. Chisholm D.: Influence of pipe surface roughness on friction pressure gradient during two-phase flow. J. Mech. Eng. Sci. 20(6), 353–354 (1978)

    Article  Google Scholar 

  7. Drew D.: Mathematical modeling of two-phase flow. Ann. Rev. Fluid Mech. 15, 261–291 (1983)

    Article  Google Scholar 

  8. Gao E.E., Young W.L., Pile-Spellman J., Joshi S., Duong H., Stieg P.E., Ma Q.: Cerebral arteriovenous malformation feeding artery aneurysms; a theoretical model of intravascular pressure changes after treatment. Neurosurgery 41, 1345–1358 (1997)

    Article  Google Scholar 

  9. Green J.E.F., Ovenden N.C., Smith F.T.: Models of motion of a single fluid through a branched network with moving walls. J. Eng. Math. 64, 353–365 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hademenos G.J., Massoud T.F., Viñuela F.: A biomathematical model of intracranial arteriovenous malformations based on electrical network analysis: theory and hemodynamics. Neurosurgery 38, 1005–1015 (1996)

    Article  Google Scholar 

  11. Issa R.I., Kempf M.H.W.: Simulation of slug flow in horizontal and nearly horizontal pipes with the two-fluid model. Int. J. Multiphase Flow 29, 69–95 (2003)

    Article  MATH  Google Scholar 

  12. Joseph D.D., Bai R., Chen K.P., Renardy Y.Y.: Core annular flows. Ann. Rev. Fluid Mech. 29, 65–90 (1997)

    Article  MathSciNet  Google Scholar 

  13. Liu Y., So R.M.C., Zhang C.M.: Modeling the bifurcating flow in an asymmetric human pulmonary artery. J. Biomech. 36, 951–959 (2003)

    Article  Google Scholar 

  14. Lussenhop A., Spence W.: Artificial embolization of cerebral arteries: report of use in a case of arteriovenous malformation. J. Am. Med. Assoc. 11, 1153–1155 (1960)

    Article  Google Scholar 

  15. Mahlmann S., Papageorgiou D.T.: Buoyancy-driven motion of a two-dimensional bubble or drop through a viscous liquid in the presence of a vertical electric field. Theoret. Comput. Fluid Dyn. 23(5), 375–399 (2009)

    Article  Google Scholar 

  16. Manga M.: Dynamics of drops in branched tubes. J. Fluid Mech. 315, 105–117 (1996)

    Article  MATH  Google Scholar 

  17. Mazzeo M., Coveney P.: HemelB: a high performance parallel Lattice-Boltzmann code for large scale fluid flow in complex geometries. Comput. Phys. Commun. 178(12), 894–914 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pedley T.J., Schroter R.C., Sudlow M.F.: Flow and pressure drop in systems of repeatedly branching tubes. J. Fluid Mech 46, 365–383 (1971)

    Article  Google Scholar 

  19. Rosenhead, L. (ed.): Laminar Boundary layers. Dover Pubs., New York

  20. Rothmayer, A.P., Smith, F.T.: Incompressible triple deck theory. In: Handbook of Fluid Dynamics, Chapters 23–25. CRC Press, Boca Raton (1998)

  21. Seruga T.T.: Endovascular treatment of intercranial arteriovenous malformations. Radiol. Oncol. 36(3), 201–208 (2002)

    Google Scholar 

  22. Shi H., Kleinstreuer C., Zhang Z.: Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions. Phys. Fluids 16(7), 2199–2213 (2004)

    Article  Google Scholar 

  23. Shockling M.A., Allen J.J., Smits A.J.: Roughness effects in turbulent pipe flow. J. Fluid Mech. 564, 267–285 (2006)

    Article  MATH  Google Scholar 

  24. Smith F.T.: Laminar flow over a small hump on a flat plate. J. Fluid Mech. 57, 803–824 (1973)

    Article  MATH  Google Scholar 

  25. Smith F.T.: Pipeflows distorted by non-symmetric indentation or branching. Mathematika 23, 62–83 (1976)

    Article  MATH  Google Scholar 

  26. Smith F.T.: Flow through symmetrically constricted tubes. J. Inst. Applies 21, 145–156 (1978)

    Article  MATH  Google Scholar 

  27. Smith F.T.: Non-parallel flow stability of the Blasius boundary layer. Proc. Roy. Soc. A. 366(1724), 91–109 (1979)

    Article  MATH  Google Scholar 

  28. Smith F.T., Brighton P.W.M., Jackson P.S., Hunt J.C.R.: On boundary-layer flow past two-dimensional obstacles. J. Fluid Mech. 113, 123–152 (1980)

    Article  MathSciNet  Google Scholar 

  29. Smith F.T., Jones M.A.: One to few and one to many branching tube flows. J. Fluid Mech. 423, 1–31 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Smith F.T., Jones M.A.: AVM modelling by multi-branching tube flow: large flow rates and dual solutions. IMA J. Math. Med. Biol. 20(2), 183–204 (2003)

    Article  MATH  Google Scholar 

  31. Tadjfar M., Smith F.T.: Direct simulations and modelling of basic three-dimensional bifurcating tube flows. J. Fluid Mech. 519, 1–32 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Taylor G.I.: Deposition of a viscous fluid on the wall of a tube. J. Fluid Mech. 10, 161–165 (1960)

    Article  Google Scholar 

  33. Tillett J.P.K.: On the laminar flow in a free jet of liquid at high Reynolds numbers. J. Fluid Mech. 96, 1–26 (1967)

    Google Scholar 

  34. Timoshin S.N., Smith F.T.: Singularities encountered in three dimensional boundary layers under an adverse or favourable pressure gradient. Phil. Trans. A. 352, 45–87 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Werle M.J., Thomas Davis R.: His contributions to numerical simulation of viscous flows—Part I-historical perspective. Meccanica 22(3), 133–158 (1991)

    Article  Google Scholar 

  36. White, A.H.: PhD Thesis, University of London (2008)

  37. White, A.H., Smith F.T.: Mathematical modelling of the embolization process for the treatment of arteriovenous malformations, Proc. IMechE Part H J. Eng. Med. (in preparation)

  38. Zhang Z., Kleinstruer C., Kim C.S.: Gas-solid two-phase flow in a triple bifurcation lung airway model. Int. J. Multiphase flow 28, 1021–1046 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. White.

Additional information

Communicated by: Hussaini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, A.H., Smith, F.T. Wall shape effects on multiphase flow in channels. Theor. Comput. Fluid Dyn. 26, 339–360 (2012). https://doi.org/10.1007/s00162-011-0237-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-011-0237-7

Keywords

Navigation