Skip to main content

Applications of the dynamic mode decomposition

Abstract

The decomposition of experimental data into dynamic modes using a data-based algorithm is applied to Schlieren snapshots of a helium jet and to time-resolved PIV-measurements of an unforced and harmonically forced jet. The algorithm relies on the reconstruction of a low-dimensional inter-snapshot map from the available flow field data. The spectral decomposition of this map results in an eigenvalue and eigenvector representation (referred to as dynamic modes) of the underlying fluid behavior contained in the processed flow fields. This dynamic mode decomposition allows the breakdown of a fluid process into dynamically revelant and coherent structures and thus aids in the characterization and quantification of physical mechanisms in fluid flow.

This is a preview of subscription content, access via your institution.

References

  1. Antonia R.A.: Conditional sampling in turbulence measurement. Ann. Rev. Fluid Mech. 13, 131–156 (1981)

    Article  Google Scholar 

  2. Aubry N.: On the hidden beauty of the proper orthogonal decomposition. Theor. Comput. Fluid Dyn. 2, 339–352 (1991)

    MATH  Article  Google Scholar 

  3. Bagheri S., Schlatter P., Schmid P.J., Henningson D.S.: Global stability of a jet in crossflow. J. Fluid Mech. 624, 33–44 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  4. Barbagallo A., Sipp D., Schmid P.J.: Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech. 641, 1–50 (2009)

    MATH  Article  Google Scholar 

  5. Edwards W.S., Tuckerman L.S., Friesner R.A., Sorensen D.C.: Krylov methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 110, 82–102 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  6. Hasselmann K.: POPs and PIPs. The reduction of complex dynamical systems using principal oscillations and interaction patterns. J. Geophys. Res. 93, 10975–10988 (1988)

    Article  Google Scholar 

  7. Heaton C.S., Nichols J.W., Schmid P.J.: Global linear stability of the non-parallel Batchelor vortex. J. Fluid Mech. 629, 139–160 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  8. Herzog, S.: The large scale structure in the near-wall region of turbulent pipe flow. Ph.D. Dissertation, Department of Mechanical Engineering, Cornell University, Ithaca, NY (1986)

  9. Huerre P., Monkewitz P.A.: Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech. 22, 473–537 (1990)

    MathSciNet  Article  Google Scholar 

  10. Hussain A.K.M.F., Zaman K.B.M.Q.: The ‘preferred mode’ of the axisymmetric jet. J. Fluid Mech. 110, 39–71 (1981)

    Article  Google Scholar 

  11. Hussain A.K.M.F.: Coherent structures and turbulence. J. Fluid Mech. 173, 303–356 (1986)

    Article  Google Scholar 

  12. Lasota A., Mackey M.C.: Chaos, Fractals and Noise: Stochastic Aspects of Dynamics. Springer Verlag, Berlin (1994)

    MATH  Google Scholar 

  13. Lehoucq R.B., Scott J.A.: Implicitly restarted Arnoldi methods and subspace iterations. SIAM J. Matrix Anal. Appl. 23, 551–562 (1997)

    Article  Google Scholar 

  14. Lumley J.L.: Stochastic Tools in Turbulence. Academic Press, New York (1970)

    MATH  Google Scholar 

  15. Mezić I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41, 309–325 (2005)

    MATH  Article  Google Scholar 

  16. Monkewitz P.A., Sohn K.D.: Absolute instabilities in hot jets. AIAA J. 26, 911–916 (1988)

    Article  Google Scholar 

  17. Rajagopalan S., Antonia R.A.: Use of a quadrant analysis technique to identify coherent structures in a turbulent boundary layer. Phys. Fluids 25, 949–956 (1982)

    Article  Google Scholar 

  18. Rowley C.W., Mezić I., Bagheri S., Schlatter S., Henningson D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  19. Ruhe A.: Rational Krylov sequence methods for eigenvalue computations. Linear Algebra Appl. 58, 279–316 (1984)

    MathSciNet  Article  Google Scholar 

  20. Schmid P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  21. Schoppa W., Hussain A.K.M.F.: Coherent structure dynamics in near wall turbulence. Fluid Dyn. Res. 26(2), 119–139 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  22. Theofilis V.: Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39, 249–315 (2003)

    Article  Google Scholar 

  23. von Storch H., Bürger G., Schnur R., von Storch J.: Principal oscillation patterns: a review. J. Clim. 8, 377–400 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Schmid.

Additional information

Communicated by T. Colonius.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmid, P.J., Li, L., Juniper, M.P. et al. Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 25, 249–259 (2011). https://doi.org/10.1007/s00162-010-0203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-010-0203-9

Keywords

  • Dynamic mode decomposition
  • Arnoldi method
  • Iterative techniques
  • Experimental fluid dynamics