Skip to main content
Log in

Cosmic vortices in hot stars and cool disks

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The radiation that permits us to observe cosmic bodies also plays a role in their structure and evolution. While the thermal aspects of the radiation are familiar to fluid dynamicists, at least qualitatively, the dynamical effects of the radiation are perhaps less so, though these effects are becoming quite important in current astrophysical studies. This subject, which I have provisionally been calling photofluiddynamics after some discussion with the late James Lighthill, has a number of applications to cosmic objects. The most massive stars known are very hot and are the sites of vigorous fluid dynamical activity. The processes involved are of interest, not only in themselves, but also in the way they affect the observed features of the hottest stars by forming coherent vortices and magnetic flux tubes. Similar structures in accretion disks, particularly in protoplanetary systems, arise and play important roles in the evolution of those objects. Here, we shall consider only disks that, like the primitive solar nebula, are relatively cool and in which vortices may participate in the formation of planets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowicz M.A., Lanza A., Spiegel E.A., Szuszkiewicz E.: Vortices on accretion disks. Nature 356, 41–43 (1991)

    Article  Google Scholar 

  2. Akasofu S.-I.: Vortical distribution of sunspots. Planet. Space Sci. 33, 275–277 (1985)

    Article  Google Scholar 

  3. Arons J.: Photon bubbles—overstability in a magnetized atmosphere. Astrophys. J. 388, 561–578 (1992)

    Article  Google Scholar 

  4. Balbus S.A., Hawley J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1–53 (1998)

    Article  Google Scholar 

  5. Baranco P., Marcus P.S.: Three-dimensional vortices in stratified protoplanetary disks. Astrophys. J. 623, 1157–1170 (2005)

    Article  Google Scholar 

  6. Barge P., Sommeria J.: Did planet formation begin inside persistent gaseous vortices? Astron. Astrophys. 295, L1–L4 (1995)

    Google Scholar 

  7. Begelman M.C.: Nonlinear photon bubbles driven by buoyancy. Astrophys. J. 636, 995–1001 (2006)

    Article  Google Scholar 

  8. Bjerknes V.: Solar hydrodynamics. Astrophys. J. 64, 93–107 (1926)

    Article  Google Scholar 

  9. Bonet J.A., Márquez I., Sánchez Almeida J., Cabello I., Domingo V.: Convectively driven vortex flows in the sun. Astrophys. J. Lett. 687, L131–L134 (2008)

    Article  Google Scholar 

  10. Bracco A., Provenzale A., Spiegel E.A., Yecko P.A.: Spotted disks. In: Abramowicz, M., Bjornsen, G., Pringle, J. (eds) Theory of Black Hole Accretion Disks, pp. 254–372. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  11. Bracco A., Chavanis P.-H., Provenzale A., Spiegel E.A.: Particle aggregation in Keplerian flows. Phys. Fluids 11, 2280–2287 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brahic, A.: (ed.) Formation of Planetary Systems, p. 15. CEPADUES Editions, France (1982)

  13. Cassinelli J.P.: Origin of nonradiative heating/momentum in hot stars. In: Underhill, A.B., Michalitsianos, A.G. (eds) Evidence for Non-Radiative Activity in Hot Stars, pp. 2–23. NASA, Washington (1985)

    Google Scholar 

  14. Cayrel, R., Steinberg, M. (eds.): Physique des Mouvements dans les Atmospheres Stellaires. Colloques Internationaux du C.N.R.S., No. 250 (1976)

  15. Chandrasekhar S.: On a new theory of Weizscker on the origin of the solar system. Rev. Mod. Phys. 18, 94–102 (1946)

    Article  Google Scholar 

  16. Chavanis P.H.: Trapping of dust by coherent vortices in the solar nebula. Astron. Astrophys. 356, 1089–1111 (2000)

    Google Scholar 

  17. Darton, R.C., LaNauze, R.D., Davidson, J.F., Harrison, D.: Chemical Engineering Research and Design, ICHemE (1977)

  18. Davidson J.F., Harrison D.: Fluidized Particles. Cambridge University Press, Cambridge (1963)

    Google Scholar 

  19. Doering C.R., Worthing R.A., Spiegel E.A.: Energy dissipation in a shear layer with suction. Phys. Fluids 12, 1955–1968 (2000)

    Article  MathSciNet  Google Scholar 

  20. Dowling, T.E., Spiegel, E.A.: Stellar and Jovian vortices. In: Gottesman, S., Buchler, J.R. (eds.) Fifth Florida Workshop on Nonlinear Astrophysics, Ann. N.Y. Acad. Sci., vol. 617, pp. 190–216 (1990)

  21. Gallet, B.: Instability theory of swirling flows with suction. In: Cenedesi, C., Whitehead, J. (eds.) 2007 Program of Study: Boundary Layers, vol. 210, pp. 1–20. WHOI-2008-05, Woods Hole Oceanographic Inst. http://www.whoi.edu/page.do?pid=19276(2008)

  22. Gallet, B., Doering, C.R., Spiegel, E.A.: Radial inow destabilizes the circular Taylor–Couette velocity. Phys. Fluids (in press) (2009)

  23. Gammie C.F.: Photon bubbles in accretion discs. MNRAS 297, 929–935 (1998)

    Article  Google Scholar 

  24. Godon P., Livio M.: Vortices in protoplanetary disks. Astrophys. J. 523, 350–356 (1999)

    Article  Google Scholar 

  25. Gough G.O., Lynden-Bell D.: Vorticity expulsion by turbulence: astrophysical implications of an Alka-Seltzer experiment. J. Fluid Mech. 32, 437–447 (1968)

    Article  Google Scholar 

  26. Guazzelli E.: Fluidized beds: from waves to bubbles. In: Hinrichsen, H., Wolf, D.E. (eds) The Physics of Granular Media, pp. 213–232. Wiley GmbH & Co. KGaA, Weinheim (2004)

    Google Scholar 

  27. Hale G.E.: Solar vortices. Astrophys. J. 28, 100–117 (1908)

    Article  MathSciNet  Google Scholar 

  28. Heimpel M., Aurnou J.: Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn. Icarus 107, 540–557 (2007)

    Article  Google Scholar 

  29. Hopfinger E.J., Browand F.K.: Vortex solitary waves in a rotating, turbulent flow. Nature 295, 393–395 (1982)

    Article  Google Scholar 

  30. Huang S.-S., Struve O.: Stellar rotation and atmospheric turbulence. In: Greenstein, J.L. (eds) Stellar Atmospheres, pp. 321–343. University of Chicago Press, Chicago (1960)

    Google Scholar 

  31. Johnson B.M., Gammie C.F.: Vortices in thin, compressible, unmagnetized disks. Astrophys. J. 635, 149–156 (2005)

    Article  Google Scholar 

  32. Krumholz M.R., Klein R., McKee C.F., Offner S.S.R., Cunningham A.J.: The formation of massive star systems by accretion. Science 323, 754–759 (2009)

    Article  Google Scholar 

  33. Ledoux P.: On the vibrational stability of gaseous stars. Astrophys. J. 94, 537 (1941)

    Article  MATH  Google Scholar 

  34. Ledoux P., Schwarzschild M., Spiegel E.A.: On the spectrum of turbulent convection. Astrophys. J. 133, 184–197 (1961)

    Article  MathSciNet  Google Scholar 

  35. Lewis E.P: Solar vortices and magnetic fields. Nature 78, 569–570 (1908)

    Article  Google Scholar 

  36. Lou Y.: A stability study of nonadiabatic oscillations in background polytropes. Astrophys. J. 361, 527–539 (1990)

    Article  Google Scholar 

  37. Lou Y: On the subadiabatic magnetohydrodynamic overstability in background polytropes. Astrophys. J. 367, 367–378 (1990)

    Article  Google Scholar 

  38. Lovelace R.V.E., Li H., Colgate S.A., Nelson A.: Rossby wave instability of Keplerian accretion disks. Astrophys. J. 513, 805–810 (1999)

    Article  Google Scholar 

  39. Mills A.A.: Fluidization phenomena and possible simplications for the origin of lunar craters. Nature 224, 863–866 (1969)

    Article  Google Scholar 

  40. Poyet J.-P., Spiegel E.A.: The onset of convection in a radially pulsating star. Astron. J. 84, 1918–1931 (1979)

    Article  Google Scholar 

  41. Prendergast K.H., Spiegel E.A.: Photon bubbles. Comments Astrophys. Space Phys. 5, 43–49 (1973)

    Google Scholar 

  42. Provenzale, A., Babiano, A., Bracco, A., Pasquero, C., Weiss, J.B.: Coherent Vortices and Tracer Transport. Lecture Notes in Physics, vol. 744, 101 ff. Springer, Berlin (2008)

  43. Saffman P.G.: Vortex Dynamics, pp. 63. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  44. Shapiro S.L., Teukolsky S.A.: Black Holes, White Dwarfs, and Neutron Stars. Wiley-Interscience Publication, New York (1983)

    Book  Google Scholar 

  45. Smith N. et al.: Kinematics and ultraviolet to infrared morphology of the inner homunculus of? Carinae. Astrophys. J. 605, 405–424 (2004)

    Article  Google Scholar 

  46. Spiegel, E.A.: Currents in Chaos. Science Year, pp. 126–141 (1979)

  47. Spiegel E.A.: Phenomenological photofluiddynamics. In: Rieutord, M., Dubrulle, B. (eds) Stellar Fluid Dynamics and Numerical imulations: From the Sun to Neutron Stars, pp. 127–142. EDP Sciences, Les Ulis (2006)

    Google Scholar 

  48. Spiegel E.A.: Reflections on the tachocline. In: Hughes, D., Rosner, R., Weiss, N. (eds) The Solar Tachocline, pp. 31–50. Cambridge University Cambridge, Cambridge (2007)

    Chapter  Google Scholar 

  49. Spiegel E.A., Zahn J.P.: Instabilities of differential rotation. Comments Astrophys. Space Phys. 2, 178–183 (1974)

    Google Scholar 

  50. Stanton, V.A.: Convection in a model of a quasar. Thesis, Manchester University (1970)

  51. Taib M.R., Swithenbank J., Nasserzadeh V., Ward M., Cottam D.: Investigation of sludge waste incineration in a novel rotating fluidized bed incinerator. Trans. Inst. Chem. Eng. 77B, 298–304 (1999)

    Google Scholar 

  52. Tanga P., Babiano A., Dubrulle B., Provenzale A.: Forming planetesimals in vortices. Icarus 121, 158–170 (1996)

    Article  Google Scholar 

  53. Turner J.S.: The constraints imposed on tornado-like vortices by the top and bottom boundary conditions. J. Fluid Mech. 25, 377–400 (1966)

    Article  Google Scholar 

  54. Umurhan, O.M.: Conducting sound. Thesis, Columbia University (1998)

  55. Veronis G.: Cellular convection with finite amplitude in a rotating fluid. J. Fluid Mech. 5, 401–435 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  56. von Weizscker C.F.: ber die Entstehung des Planetensystems. Zts. Astrophys. 22, 319–355 (1943)

    Google Scholar 

  57. Williams G.P., Wilson R.J.: The stability and genesis of Rossby vortices. J. Atmos. Sci. 45, 207–241 (1988)

    Article  Google Scholar 

  58. Woltjer J. Jr: Note on the circular vortex in the theory of sunspots. Bull. Astron. Inst. Neth. 7, 164 (1934)

    Google Scholar 

  59. Zahn, J.-P.: Rotational instabilities and stellar evolution. In: Stellar Instability and Evolution. Proc. Symp. Canberra, Australia, pp. 185–194. D. Reidel Pub. Co., Dordrecht (1974)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Spiegel.

Additional information

Communicated by H. Aref

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiegel, E.A. Cosmic vortices in hot stars and cool disks. Theor. Comput. Fluid Dyn. 24, 77–93 (2010). https://doi.org/10.1007/s00162-009-0172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0172-z

Keywords

PACS

Navigation