Skip to main content
Log in

Helical shell models for MHD

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A shell model for magnetohydrodynamics (MHD) is derived directly from the dynamical system driving the evolution of three helical modes interacting in a triad. The use of helical modes implies that two shell variables are required for the velocity as well as for the magnetic field. The advantage of the method is the automatic conservation of all the ideal quadratic MHD invariants. The number of coupling constants is however larger than in traditional shell models. This difficulty is worked around by introducing an averaging procedure that allows to derive the shell model coupling constants directly from the MHD equations. The resulting shell model is used to explore the influence of a helical forcing on the global properties of MHD turbulence close to the onset of the dynamo regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frisch U.: Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  2. Gletzer E.B.: System of hydrodynamic type admitting two quadratic integrals of motion. Sov. Phys. Dokl. 18, 216–217 (1973)

    Google Scholar 

  3. Lorenz E.N.: Low order models representing realizations of turbulence. J. Fluid Mech. 55, 545–563 (1972)

    Article  MATH  Google Scholar 

  4. Yamada M., Ohkitani K.: Lyapounov spectrum of a chaotic model of three-dimensional turbulence. J. Phys. Soc. Jpn. 56, 4210–4213 (1987)

    Article  Google Scholar 

  5. L’vov V.S., Podivilov E., Pomyalov A., Procaccia I., Vandembroucq D.: Improved shell model of turbulence. Phys. Rev. E 58, 1811–1822 (1998)

    Article  MathSciNet  Google Scholar 

  6. L’vov V.S., Podivilov E., Procaccia I.: Hamiltonian structure of the Sabra shell model of turbulence: exact calculation of an anomalous scaling exponent. Europhys. Lett. 46, 609–612 (1999)

    Article  Google Scholar 

  7. Gloaguen C., Léorat J., Pouquet A., Grappin R.: A scalar model for MHD turbulence. Physica D 17, 154–182 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Frick P., Sokoloff S.: Cascade and dynamo action in a shell model of magnetohydrodynamic turbulence. Phys. Rev. E 57, 4155–4164 (1998)

    Article  MathSciNet  Google Scholar 

  9. Stepanov R., Plunian F.: Fully developed turbulent dynamo at low magnetic prandtl numbers. J. Turbul. 7(39), (2006)

  10. Lessinnes, T., Verma, M., Carati, D.: Energy transfers in shell models of magnetohydrodynamic turbulence. Phys. Rev. E arxiv:0807.5076 (2008)

  11. Stepanov R., Plunian F.: Phenomenology of turbulent dynamo growth and saturation. Astrophys. J. 680, 809–815 (2008)

    Article  Google Scholar 

  12. Benzi R., Biferale L., Kerr R.M., Trovatore E.: Helical shell models for three-dimensional turbulence. Phys. Rev. E 53, 3541–3550 (1996)

    Article  Google Scholar 

  13. Waleffe F.: The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4, 350–363 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lessinnes, T., Carati, D.: Helical shell models for MHD turbulence. In: Proceeding of the 7th Int. PAMIR Conf. vol. 2, pp. 513–524 (2008); Lessinnes, T., Carati, D.: Helical shell models for MHD turbulence. Magnetohydrodynamics 45(2), 193–202 (2009)

    Google Scholar 

  15. Plunian F., Stepanov R.: A non-local shell model of hydrodynamic and magnetohydrodynamic turbulence. New J. Phys. 9, 294–319 (2007)

    Article  Google Scholar 

  16. Ottinger J.L., Carati D.: Shell models for plasma turbulence. Phys. Rev. E 48, 2955–2965 (1993)

    Article  Google Scholar 

  17. Giuliani P., Carbone V.: A note on shell models for mhd turbulence. Europhys. Lett. 43(5), 527–532 (1998)

    Article  Google Scholar 

  18. Gailitis A., Lielausis O., Platacis E., Dement’ev S., Cifersons A., Gerbeth G., Gundrum T., Stefani F., Christen M., Hänel H., Will G.: Detection of a flow induced magnetic field eigenmode in the riga dynamo facility. Phys. Rev. Lett. 84, 4365–4368 (2000)

    Article  Google Scholar 

  19. Gailitis A., Lielausis O., Dement’ev S., Platacis E., Cifersons A., Gerbeth G., Gundrum T., Stefani F., Christen M., Will G.: Detection of a flow induced magnetic field eigenmode in the riga dynamo facility. Phys. Rev. Lett. 88, 3024–3027 (2001)

    Article  Google Scholar 

  20. Müller U., Stieglitz R.: The Karlsruhe dynamo experiment. Nonlinear Process. Geophys. 9, 165–170 (2002)

    Google Scholar 

  21. Benzi R., Ciliberto S., Tripiccione R., Baudet C., Massoaioli F., Succi S.: Extended self-similarity in turbulent flows. Phys. Rev. E 48(1), R29–R32 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lessinnes.

Additional information

Communicated by O. Zikanov

The content of the publication is the sole responsibility of the authors and it does not necessarily represent the views of the Commission or its services.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lessinnes, T., Plunian, F. & Carati, D. Helical shell models for MHD. Theor. Comput. Fluid Dyn. 23, 439–450 (2009). https://doi.org/10.1007/s00162-009-0165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0165-y

Keywords

PACS

Navigation