Skip to main content
Log in

The velocity profile of laminar MHD flows in circular conducting pipes

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We present numerical simulations without modeling of an incompressible, laminar, unidirectional circular pipe flow of an electrically conducting fluid under the influence of a uniform transverse magnetic field. Our computations are performed using a finite-volume code that uses a charge-conserving formulation [called current-conservative formulation in references (Ni et al J Comput Phys 221(1):174–204, 2007, Ni et al J Comput Phys 227(1):205–228, 2007)]. Using high resolution unstructured meshes, we consider Hartmann numbers up to 3000 and various values of the wall conductance ratio c. In the limit \({c{\ll}{\rm Ha}^{-1}}\) (insulating wall), our results are in excellent agreement with the so-called asymptotic solution (Shercliff J Fluid Mech 1:644–666, 1956). For higher values of the wall conductance ratio, a discrepancy with the asymptotic solution is observed and we exhibit regions of velocity overspeed in the Roberts layers. We characterise these overspeed regions as a function of the wall conductance ratio and the Hartmann number; a set of scaling laws is derived that is coherent with existing asymptotic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartmann J.: Hg-dynamics I. Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. XV(6), 1–28 (1937)

    Google Scholar 

  2. Hartmann J., Lazarus F.: Hg-dynamics II. Experimental investigations on the flow of mercury in a homogeneous magnetic field. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. XV(7), 1–45 (1937)

    Google Scholar 

  3. Gold R.R.: Magnetohydrodynamic pipe flow. Part 1. J. Fluid Mech. 13, 505–512 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ihara S., Kiyohiro T., Matsushima A.: The flow of conducting fluids in circular pipes with finite conductivity under uniform transverse magnetic fields. J. Appl. Mech. 34(1), 29–36 (1967)

    MATH  Google Scholar 

  5. Samad S.: The flow of conducting fluids through circular pipes having finite conductivity and finite thickness under uniform transverse magnetic fields. Int. J. Eng. Sci. 19, 1221–1232 (1981)

    Article  MATH  Google Scholar 

  6. Shercliff A.: The flow of conducting fluids in circular pipes under transverse magnetic fields. J. Fluid Mech. 1, 644–666 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  7. Shercliff A.: Magnetohydrodynamic pipe flow. Part 2. High Hartmann number. J. Fluid Mech. 13, 513–518 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chang C., Lundgren S.: Duct flow in magnetohydrodynamics. ZAMP XII, 100–114 (1961)

    Article  MathSciNet  Google Scholar 

  9. Ni M.-J., Munipalli R., Morley N.B., Huang P., Abdou M.A.: A current density conservative scheme for incompressible MHD flows at a low magnetic reynolds number. Part I: on rectangular collocated grid system. J. Comput. Phys. 221(1), 174–204 (2007)

    Article  MathSciNet  Google Scholar 

  10. Ni M.-J., Munipalli R., Huang P., Morley N.B., Abdou M.A.: A current density conservative scheme for incompressible MHD flows at a low magnetic reynolds number. Part II: on an arbitrary collocated mesh. J. Comput. Phys. 227(1), 205–228 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mistrangelo, C.: Three-dimensional MHD flow in sudden expansions. PhD Thesis, Fakültat für Maschinenbau, Universität Karlsruhe (2005)

  12. Roberts P.H.: An Introduction to Magnetohydrodynamics. American Elsevier Publishing Company, Inc., New York (1967)

    Google Scholar 

  13. Walker J.S.: Magnetohydrodynamic flows in rectangular ducts with thin conducting walls. Journal de Mécanique 20(1), 79–112 (1981)

    MATH  Google Scholar 

  14. Gnatyuk V.V., Paramonova T.: Effect of the conductivity of the walls on the velocity profile in a circular tube. Magnetohydrodynamics 7(1), 145–147 (1971)

    Google Scholar 

  15. Roberts P.H.: Singularities of hartmann layers. Proc. R. Soc. A 300, 94–107 (1967)

    Article  MATH  Google Scholar 

  16. Hunt J.C.R.: Magnetohydrodynamic flow in rectangular ducts. J. Fluid Mech. 21(4), 577–590 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vantieghem.

Additional information

Communicated by O. Zikanov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vantieghem, S., Albets-Chico, X. & Knaepen, B. The velocity profile of laminar MHD flows in circular conducting pipes. Theor. Comput. Fluid Dyn. 23, 525–533 (2009). https://doi.org/10.1007/s00162-009-0163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0163-0

Keywords

PACS

Navigation