Skip to main content
Log in

On relative equilibria and integrable dynamics of point vortices in periodic domains

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The motion of two point vortices defines an integrable Hamiltonian dynamical system in either singly or doubly periodic domains. The motion of three point vortices in these domains is also integrable when the net circulation is zero. The relative vortex motion in both domains can be reduced to advection of a passive particle by fixed vortices in an equivalent Hamiltonian system. A survey of the solutions for vortex motion in these systems is discussed. Some initial conditions lead to relative equilibria, or vortex configurations that move without change of shape or size. These configurations can be determined as stagnation points in the reduced problem or through explicit solution of the governing equations. These periodic point-vortex systems present a rich collection of interesting solutions despite the few degrees of freedom, and several questions on this subject remain open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abo-Shaer J.R., Raman C., Vogels J.M., Ketterle W.: Observation of vortex vattices in Bose Einstein condensates. Science 292, 476–479 (2001)

    Article  Google Scholar 

  2. Aref H., Stremler M.A.: On the motion of three point vortices in a periodic strip. J. Fluid Mech. 314, 1–25 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aref, H., Stremler, M.A.: Point vortex models and the dynamics of strong vortices in the atmosphere and oceans. In: Lumley, J.L. (ed.) Fluid Mechanics and the Environment: Dynamical Approaches, pp. 1–17. Springer Verlag, Lecture Notes in Physics (2001)

  4. Aref H., Rott N., Thomann H.: Gröbli’s solution of the three-vortex problem. Ann. Rev. Fluid Mech. 24, 1–20 (1992)

    Article  MathSciNet  Google Scholar 

  5. Aref H., Boyland P.L., Stremler M.A., Vainchtein D.L.: Turbulent statistical dynamics of a system of point vortices. In: Gyr, A., Kinzelbach, W., Tsinober, A. (eds) Fundamental Problematic Issues in Turbulence, pp. 151–161. Birkhäuser– Verlag, Basel (1999)

    Google Scholar 

  6. Aref H., Newton P.K., Stremler M.A., Tokieda T., Vainchtein D.L.: Vortex crystals. Adv. Appl. Mech. 39, 1–79 (2003)

    Article  Google Scholar 

  7. Aref H., Stremler M.A., Ponta F.L.: Exotic vortex wakes—point vortex solutions. J. Fluids Struct. 22, 929–940 (2006)

    Article  Google Scholar 

  8. Aref H., Brøns M., Stremler M.A.: Bifurcation and instability problems in vortex wakes. J. Phys. Conf. Ser. 64, 012015 (2007)

    Article  Google Scholar 

  9. Boyland P.L., Aref H., Stremler M.A.: Topological fluid mechanics of stirring. J. Fluid Mech. 403, 277–304 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boyland P.L, Stremler M.A., Aref H.: Topological fluid mechanics of point vortex motions. Physica D 175, 69–95 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Campbell L.J., Doria M.M., Kadtke J.B.: Energy of infinite vortex lattices. Phys. Rev. A 39(10), 5436–5439 (1989)

    Article  Google Scholar 

  12. Charney, J.G.: Numerical experiments in atmospheric hydrodynamics. In: Experimental Arithmetic, High Speed Computing and Mathematics. Proc. Symp. Appl. Math, vol. 15, pp. 289–310. Am. Math. Soc., Providence, R. I. (1963)

  13. Fetter A.L., Hohenberg P.C., Pincus P.: Stability of a lattice of superfluid vortices. Phys. Rev. 147(1), 140–152 (1966)

    Article  Google Scholar 

  14. Friedmann, A., Poloubarinova, P.: Über fortschreitende Singularitäten der ebenen Bewegung einer inkompressiblen Flüssigkeit. Recueil de Géophysique, Tome V (Fascicule II, Leningrad), pp. 9–23 (1928)

  15. Gröbli, W.: Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden. Zürcher und Furrer, Zürich (1877) Also in: Vierteljschr. Naturf. Ges. Zürich 22, 37–81, 129–165 (1877)

  16. Helmholtz, H.: Über die Integrale der hydrodynamischen Gleichungen, welche Wirbelbewegungen entsprechen. J. reine angew. Math. 55, 25–55 (1858). Transl. by P.G. Tait: On integrals of the hydrodynamical equations which express vortex-motion. Phil. Mag. 33, 485–512 (1867)

    Google Scholar 

  17. Maue A.W.: Zur Stabilität der Kármánschen Wirbelstrasse. Z. Angew. Math. Mech. 20, 129–137 (1940)

    Article  MathSciNet  Google Scholar 

  18. Montaldi J., Souliére A., Tokieda T.: Vortex dynamics on a cylinder. SIAM J. Appl. Dyn. Sys. 2(3), 417–430 (2003)

    Article  MATH  Google Scholar 

  19. O’Neil K.A.: Symmetric configurations of vortices. Phys. Lett. A 124(9), 503–507 (1987)

    Article  MathSciNet  Google Scholar 

  20. O’Neil K.A.: On the Hamiltonian dynamics of vortex lattices. J. Math. Phys. 30(6), 1373–1379 (1989)

    Article  MathSciNet  Google Scholar 

  21. O’Neil K.A.: Continuous parametric families of stationary and translating periodic point vortex configurations. J. Fluid Mech. 591, 393–411 (2007)

    MATH  MathSciNet  Google Scholar 

  22. Sansone, G., Gerretsen, J.: Lectures on the theory of functions of a complex variable. P. Noordhoff, Groningen (1960)

  23. Stremler M.A.: Relative equilibria of singly periodic point vortex arrays. Phys. Fluids 15(12), 3767–3775 (2003)

    Article  MathSciNet  Google Scholar 

  24. Stremler M.A.: Evaluation of phase-modulated lattice sums. J. Math. Phys. 45, 3584–3589 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Stremler M.A., Aref H.: Motion of three point vortices in a periodic parallelogram. J. Fluid Mech. 392, 101–128 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tkachenko V.K.: On vortex lattices. Sov. Phys. JETP 22, 1282–1286 (1966)

    Google Scholar 

  27. Tkachenko V.K.: Stability of vortex lattices. Sov. Phys. JETP 23, 1049 (1966)

    Google Scholar 

  28. von Kármán, T.: Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfärt. 1. Teil. Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 509–517 (1911). Reprinted in: Collected works of Theodore von Kármán, vol.1, pp. 324–330. Butterworth, London (1956)

  29. von Kármán, T.: Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfärt. 2. Teil. Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 547–556 (1912). Reprinted in: Collected works of Theodore von Kármán, vol. 1, pp. 331–338. Butterworth, London (1956)

  30. Whittaker E.T., Watson G.N.: A Course of Modern Analysis (4th ed.). Cambridge University Press, Cambridge (1927)

    Google Scholar 

  31. Williamson C.H.K., Roshko A.: Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355–381 (1988)

    Article  Google Scholar 

  32. Yarmchuck E.J., Gordon M.J.V., Packard R.: Observation of stationary vortex arrays in rotating superfluid Helium. Phys. Rev. Lett. 43, 214–217 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Stremler.

Additional information

Communicated by H. Aref

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stremler, M.A. On relative equilibria and integrable dynamics of point vortices in periodic domains. Theor. Comput. Fluid Dyn. 24, 25–37 (2010). https://doi.org/10.1007/s00162-009-0156-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0156-z

Keywords

PACS

Navigation