Skip to main content
Log in

Validation of large eddy simulation method for study of flatness and skewness of decaying compressible magnetohydrodynamic turbulence

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In the present work we study potential applicability of large eddy simulation (LES) method for prediction of flatness and skewness of compressible magnetohydrodynamic (MHD) turbulence. The knowledge of these quantities characterizes non-Gaussian properties of turbulence and can be used for verification of hypothesis on Gaussianity for the turbulent flow under consideration. Prediction accuracy of these quantities by means of LES method directly determines efficiency of reconstruction of probability density function (PDF) that depends on used subgrid-scale (SGS) parameterizations. Applicability of LES approach for studying of PDF properties of turbulent compressible magnetic fluid flow is investigated and potential feasibilities of five SGS parameterizations by means of comparison with direct numerical simulation results are explored. The skewness and the flatness of the velocity and the magnetic field components under various hydrodynamic Reynolds numbers, sonic Mach numbers, and magnetic Reynolds numbers are studied. It is shown that various SGS closures demonstrate the best results depending on change of similarity numbers of turbulent MHD flow. The case without any subgrid modeling yields sufficiently good results as well. This indicates that the energy pile-up at the small scales that is characteristic for the model without any subgrid closure, does not significantly influence on determination of PDF. It is shown that, among the subgrid models, the best results for studying of the flatness and the skewness of velocity and magnetic field components are demonstrated by the Smagorinsky model for MHD turbulence and the model based on cross-helicity for MHD case. It is visible from the numerical results that the influence of a choice subgrid parametrization for the flatness and the skewness of velocity is more essential than for the same characteristics of magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agullo O., Müller W.C., Knaepen B., Carati D.: Large eddy simulation of decaying magnetohydrodynamic turbulence with dynamic subgrid-modeling. Phys. Plasmas 8(7), 3502–3505 (2001)

    Article  Google Scholar 

  2. Biskamp D.: Magnetohydrodynamic Turbulence. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  3. Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Large-eddy simulation of magnetohydrodynamic turbulence in compressible fluid. Phys. Plasmas 13(3), 032304 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Subgrid-scale modelling in large-eddy simulations of compressible magnetohydrodynamic turbulence. Russ. J. Numer. Anal. Math. Model. 21(1), 1–20 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Subgrid-scale modelling of compressible magnetohydrodynamic turbulence in heat-conducting plasma. Phys. Plasmas 13(10), 104501 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Development of large eddy simulation for modeling of decaying compressible MHD turbulence. Phys. Fluids 19(5), 055106 (2007)

    Article  Google Scholar 

  7. Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Assessment of subgrid-scale models for decaying compressible MHD turbulence. Flow, Turbul. Combust. 80(1), 21–35 (2008). doi:10.1007/s10494-007-9100-8

    Article  MATH  Google Scholar 

  8. Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Modeling of compressible magnetohydrodynamic turbulence in electrically and heat conducting fluid using large eddy simulation. Phys. Fluids 20(8), 085106 (2008)

    Article  Google Scholar 

  9. Chernyshov A.A., Karelsky K.V., Petrosyan A.S.: Three-dimensional modeling of compressible magnetohydrodynamic turbulence in the local interstellar medium. Astrophys. J. 686, 1137–1144 (2008)

    Article  Google Scholar 

  10. Germano M., Piomelli U., Moin P., Cabot W.: A dynamic subgrid-scale eddy-viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  11. Gomez T., Sagaut P., Schilling O., Zhou Y.: Large-eddy simulation of very large kinetic and magnetic reynolds number isotropic magnetohydrodynamic turbulence using a spectral subgrid model. Phys. Fluids 19(4), 032304 (2007)

    Article  Google Scholar 

  12. Jiménez M.A., Cuxart J.: Study of the probability density functions from a large-eddy simulation for a stably stratified boundary layer. Boundary-Layer Meteorol. 118, 401–420 (2006)

    Article  Google Scholar 

  13. Knaepen B., Moin P.: Large-eddy simulation of conductive flows at low magnetic reynolds number. Phys. Fluids 16(5), 1255–1261 (2004)

    Article  MathSciNet  Google Scholar 

  14. Lazarian A.: Intermittency of magnetohydrodynamic turbulence: astrophysical perspective. Int. J. Mod. Phys. D 15, 1099–1111 (2006)

    Article  MATH  Google Scholar 

  15. Lilly D.: A proposed modification of the germano subgrid scale closure method. Phys. Fluids A 4, 633–635 (1992)

    Article  Google Scholar 

  16. Müller W.C., Carati D.: Dynamic gradient-diffudion subgrid models for incompressible magnetohydrodynamics turbulence. Phys. Plasmas 9(3), 824–834 (2002)

    Article  Google Scholar 

  17. Müller W.C., Carati D.: Large-eddy simulation of magnetohydrodynamic turbulence. Comput. Phys. Commun. 147, 344–347 (2002)

    Google Scholar 

  18. Park N., Yoo J., Choi H.: Discretization errors in large eddy simulation: on the suitability of centered and upwind-biased compact difference schemes. J. Comput. Phys. 198, 580–616 (2004)

    Article  MATH  Google Scholar 

  19. Sagaut P., Grohens R.: Discrete filters for large eddy simulation. Int. J. Numer. Mech. Fluids 31, 1195–1220 (1999)

    Article  MATH  Google Scholar 

  20. Smagorinsky J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  21. Sreenivasan K.R., Antonia R.A.: The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435–472 (1997)

    Article  MathSciNet  Google Scholar 

  22. Theobald M., Fox P., Sofia S.: A subgrid-scale resistivity for magnetohydrodynamics. Phys. Plasmas 1(9), 3016–3032 (1994)

    Article  Google Scholar 

  23. Vorobev A., Zikanov O.: Smagorinsky constant in les modeling of anisotropic MHD turbulence. Theor. Comput. Fluid Dyn. 22(3–4), 317–325 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arakel S. Petrosyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernyshov, A.A., Karelsky, K.V. & Petrosyan, A.S. Validation of large eddy simulation method for study of flatness and skewness of decaying compressible magnetohydrodynamic turbulence. Theor. Comput. Fluid Dyn. 23, 451–470 (2009). https://doi.org/10.1007/s00162-009-0153-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0153-2

Keywords

PACS

Navigation