Skip to main content
Log in

Swimming in an inviscid fluid

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We present a set of equations governing the motion of a body due to prescribed shape changes in an inviscid, planar fluid with nonzero vorticity. The derived equations, when neglecting vorticity, reduce to the model developed in Kanso et al. (J Nonlinear Sci 15:255–289, 2005) for swimming in potential flow, and are also consistent with the models developed in Borisov et al. (J Math Phys 48:1–9, 2007), Kanso and Oskouei (J Fluid Mech 800:77–94, 2008), Shasikanth et al. (Phys Fluids 14(3):1214–1227, 2002) for a rigid body interacting dynamically with point vortices. The effects of cyclic shape changes and the presence of vorticity on the locomotion of a submerged body are discussed through examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beal D.N., Hover F.S., Triantafyllou M.S., Liao J.C., Lauder G.V.: Passive propulsion in vortex wakes. J. Fluid Mech. 549, 385–402 (2006)

    Article  Google Scholar 

  2. Borisov A.V., Mamaev I.S., Ramodanov S.M.: Dynamic interaction of point vortices and a two-dimensional cylinder. J. Math. Phys. 48, 1–9 (2007)

    Article  MathSciNet  Google Scholar 

  3. Jones M.A.: The separated flow of an inviscid fluid around a moving flat plate. J. Fluid Mech. 496, 405–441 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kanso E., Marsden J.E., Rowley C.W., Melli-Huber J.: Locomotion of articulated bodies in a perfect fluid. J. Nonlinear Sci. 15, 255–289 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kanso E., Oskouei B.: Stability of a coupled body-vortex system. J. Fluid Mech. 800, 77–94 (2008)

    MathSciNet  Google Scholar 

  6. Kanso, E.: Swimming due to transverse shape deformations. J. Fluid Mech. (2009, in press)

  7. Katz J., Plotkin A.: Low-Speed Aerodynamics. Cambridge Aerospace Series, Cambridge (2001)

    MATH  Google Scholar 

  8. Kelly, S.D.: The mechanics and control of robotic locomotion with applications to aquatic vehicles. Ph.D. thesis, California Institute of Technology (1998)

  9. Lamb H.: Hydrodynamics. Dover, New York (1932)

    MATH  Google Scholar 

  10. Lighthill, J.: Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics. Philadelphia (1975)

  11. Miloh T., Galper A.: Self-propulsion of general deformable shapes in a perfect fluid. Proc. R. Soc. Lond. A 442, 273–299 (1993)

    Article  MATH  Google Scholar 

  12. Montgomery R.: Isoholonomic problems and some applications. Commun. Math. Phys. 128, 565–592 (1990)

    Article  MATH  Google Scholar 

  13. Radford, J.: Symmetry, Reduction and swimming in a perfect fluid. Ph.D. thesis, California Institute of Technology (2003)

  14. Shapere, Wilczek: Self-propulsion at low Reynolds number. Phys. Rev. Lett. 58(2), 2051–2054 (1987)

    Google Scholar 

  15. Shashikanth, B.N., Marsden, J.E., Burdick, J.W., Kelly, S.D.: The Hamiltonian structure of a 2D rigid circular cylinder interacting dynamically with N Point vortices. Phys. Fluids 14(3), 1214–1227 (2002) (see also Erratum, Phys. Fluids 14(11), 4099)

    Google Scholar 

  16. Shashikanth B.N.: Poisson brackets for the dynamically interacting system of a 2D rigid cylinder and N point vortices: the case of arbitrary smooth cylinder shapes. Reg. Chaos. Dyn. 10(1), 110 (2005)

    MathSciNet  Google Scholar 

  17. Shukla R.K., Eldredge J.E.: An inviscid model for vortex shedding from a deforming body. Theor. Comput. Fluid Dyn. 21(5), 343–368 (2007)

    Article  Google Scholar 

  18. Saffman, P.G.: Vortex dynamics. Cambridge Monographs on Mechanics and Applied Mathematics (1992)

  19. Tytell E.D., Lauder G.V.: The hydrodynamics of eel swimming: I. Wake structure. J. Exp. Biol. 207, 1825–1841 (2004)

    Article  Google Scholar 

  20. Wu T.: Hydrodynamics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid. J. Fluid Mech. 46(2), 337–355 (1971)

    Article  Google Scholar 

  21. Wu T.: Hydrodynamics of swimming propulsion. Part 2. Some optimum shape problems. J. Fluid Mech. 46(3), 521–544 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kanso.

Additional information

Communicated by H. Aref

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanso, E. Swimming in an inviscid fluid. Theor. Comput. Fluid Dyn. 24, 201–207 (2010). https://doi.org/10.1007/s00162-009-0118-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0118-5

Keywords

PACS

Navigation