Skip to main content
Log in

Analytic models of heterogenous magnetic fields for liquid metal flow simulations

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A physically consistent approach is considered for defining an external magnetic field as needed in computational fluid dynamics problems involving magnetohydrodynamics (MHD). The approach results in simple analytical formulae that can be used in numerical studies where an inhomogeneous magnetic field influences a liquid metal flow. The resulting magnetic field is divergence and curl-free, and contains two components and parameters to vary. As an illustration, the following examples are considered: peakwise, stepwise, shelfwise inhomogeneous magnetic fields, and the field induced by a solenoid. Finally, the impact of the streamwise magnetic field component is shown qualitatively to be significant for rapidly changing fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albets-Chico, X., Radhakrishnan, H., Votyakov, E.V., Kassinos, S.: Effects of the consistency of the magnetic field on direct numerical simulations of liquid metal flow (2009, to be submitted)

  2. Alboussiere Th.: A geostrophic-like model for large Hartmann number flows. J. Fluid. Mech. 521, 125–154 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cuevas S., Smolentsev S., Abdou M.: On the flow past a magnetic obstacle. J. Fluid. Mech. 553, 227–252 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cuevas S., Smolentsev S., Abdou M.: Vorticity generation in creeping flow past a magnetic obstacle. Phys. Rev. E 74, 056301 (2006)

    Article  Google Scholar 

  5. Davidson P.: Magnetohydrodynamics in materials processing. Ann. Rev. Fluid Mech. 31, 273–300 (1999)

    Article  Google Scholar 

  6. Davidson P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, London (2001)

    MATH  Google Scholar 

  7. Hartmann J., Lazarus F.: Slow steady flows of a conducting fluid at high hartmann numbers. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 15, 1 (1937)

    Google Scholar 

  8. Jackson J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  9. Kulikovskii, A.G.: Slow steady flows of a conducting fluid at high hartmann numbers. Izv. Akad. Nauk. SSSR Mekh. Zhidk. i Gaza (3), 3–10 (1968)

  10. Kumamaru H., Kodama S., Hirano H., Itoh K.: Three-dimensional numerical calculations on liquid-metal magnetohydrodynamic flow in magnetic-field inlet-region. J. Nucl. Sci. Technol. 41(5), 624–631 (2004)

    Article  Google Scholar 

  11. Kumamaru H., Shimoda K., Itoh K.: Three-dimensional numerical calculations on liquid-metal magneto-hydrodynamic flow through circular pipe in magnetic-field inlet-region. J. Nucl. Sci. Technol. 44(5), 714–722 (2007)

    Article  Google Scholar 

  12. McCaig M.: Permanent Magnets in Theory and Practice. Wiley, New York (1977)

    Google Scholar 

  13. Molokov S., Reed C.B.: Liquid metal magnetohydrodynamic flows in circular ducts at intermediate hartmann numbers and interaction parameters. Magnetohydrodynamics 39(4), 539–546 (2003)

    Google Scholar 

  14. Molokov S., Reed C.B.: Parametric study of the liquid metal flow in a straight insulated circular duct in a strong nonuniform magnetic field. Fusion Sci. Technol. 43, 200–216 (2003)

    Google Scholar 

  15. Ni M.-J., Munipalli R., Huang P., Morley N.B., Abdou M.A.: A current density conservative scheme for incompressible MHD flows at a low magnetic reynolds number. Part II: on an arbitrary collocated mesh. J. Comput. Phys. 227(1), 205–228 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Fast Fourier Transform. In: Numerical Recipes in FORTRAN: The Art of Scientific Computing, 3rd edn, Ch. 12.2 , pp. 498. Cambridge University Press, Cambridge (2007); see also http://mathworld.wolfram.com/FastFourierTransform.html

  17. Reed, C.B., Picologlou, B.F., Hua, T.Q., Walker, J.S.: Alex results, a comparison of measurements from round and a rectangular duct with 3-d code predictions. In: IEEE 12th Symposium on Fusion Engineering, pp. 1267–1270 (1987)

  18. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Analy. Chem. 36, 1627–1639 (1964); see also http://en.wikipedia.org/wiki/Savitzky-Golay_smoothing_filter

  19. Sterl A.: Numerical simulation of liquid-metal MHD flows in rectangular ducts. J. Fluid. Mech. 216, 161–191 (1990)

    Article  MATH  Google Scholar 

  20. Thess A., Votyakov E.V., Kolesnikov Y.: Lorentz force velocimetry. Phys. Rev. Lett. 96, 164501 (2006)

    Article  Google Scholar 

  21. Todd L.: Magnetohydrodynamic flow along cylindrical pipes under non-uniform transverse magnetic fields. J. Fluid. Mech. 31(2), 321–342 (1968)

    Article  MATH  Google Scholar 

  22. Votyakov E.V., Kolesnikov Y., Andreev O., Zienicke E., Thess A.: Structure of the wake of a magnetic obstacle. Phys. Rev. Lett. 98(14), 144504 (2007)

    Article  Google Scholar 

  23. Votyakov E.V., Zienicke E., Kolesnikov Y.: Constrained flow around a magnetic obstacle. J. Fluid. Mech. 610, 131–156 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Votyakov.

Additional information

Communicated by O. Zikanov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Votyakov, E.V., Kassinos, S.C. & Albets-Chico, X. Analytic models of heterogenous magnetic fields for liquid metal flow simulations. Theor. Comput. Fluid Dyn. 23, 571–578 (2009). https://doi.org/10.1007/s00162-009-0114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0114-9

Keywords

PACS

Navigation