Skip to main content
Log in

The N-vortex problem on a sphere: geophysical mechanisms that break integrability

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We describe the dynamical system governing the evolution of a system of point vortices on a rotating spherical shell, highlighting features which break what would otherwise be an integrable problem. The importance of the misalignment of the center-of-vorticity vector associated with a cluster of point vortices with the axis of rotation is emphasized as a crucial factor in the interpretation of dynamical features for many flow configurations. We then describe two important physical mechanisms which break what would otherwise be an integrable problem—the interactions between the local center-of-vorticity vectors of more than one region of concentrated vorticity, and the coupling between the center-of-vorticity vector and the background vorticity field which supports Rossby waves. Focusing on the Polar vortex splitting event of September 2002, we describe simple (i.e., low dimensional) mechanisms that can trigger instabilities whose subsequent development cause the onset of chaotic advection and global particle transport. At the linear level, eigenvalues that oscillate between elliptic and hyperbolic configurations initiate the pinch-off process of a passive patch representing the Polar vortex. At the nonlinear level, the evolution and topological bifurcations of the streamline patterns are responsible for its further splitting, stretching, and subsequent transport over the sphere. We finish by briefly describing how to incorporate conservation of potential vorticity and the development of a model governing the probability density function associated with the point vortex system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baines P.: The stability of planetary waves on a sphere. J. Fluid Mech. 73, 193–213 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boatto S., Pierrehumbert R.T.: Dynamics of a passive scalar in a velocity field of four identical point vortices. J. Fluid Mech. 394, 137–174 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bogomolov V.A.: Two-dimensional fluid dynamics on a sphere. Izv. Atm. Ocean. Phys. 15(1), 18–22 (1979)

    MathSciNet  Google Scholar 

  4. Bogomolov V.A.: Dynamics of vorticity at a sphere. Fluid Dyn. 6, 863–870 (1977)

    Article  Google Scholar 

  5. Borisov A.V., Pavlov A.E.: Dynamics and statics of vortices on a plane and a sphere I. Regul. Chaotic Dyn. 3(1), 28–38 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borisov A.V., Lebedev V.G.: Dynamics and statics of vortices on a plane and a sphere II. Regul. Chaotic Dyn. 3(2), 99–114 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bowman K.P., Mangus N.J.: Observations of deformation and mixing of the total ozone field in the antarctic polar vortex. J. Atmos. Sci. 50(17), 2915–2921 (1993)

    Article  Google Scholar 

  8. Charlton A.J., O’Neil A., Lahoz W.A., Berrisford P.: The splitting of the stratospheric polar vortex in the southern hemisphere, September 2002: Dynamical evolution. J. Atmos. Sci. 62, 590–602 (2005)

    Article  Google Scholar 

  9. Cushman-Roisin B.: Introduction to Geophysical Fluid Dynamics. Prentice-Hall, NJ (1994)

    Google Scholar 

  10. DiBattista M.T., Polvani L.M.: Barotropic vortex pairs on a rotating sphere. J. Fluid Mech. 358, 107–133 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dritschel D.G., Polvani L.M.: The roll-up of vorticity strips on the surface of a sphere. J. Fluid Mech. 234, 47–69 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Haynes, P.: Transport, stirring and mixing in the atmosphere. In: Chaté, H., Villermaux, E. (eds.) Proceedings of the NATO Advanced Study Institute on Mixing, Chaos and Turblence, Cargese Corse, France, 7–20 July 1996, pp. 229–272. Kluwer, Dordrecht (1999)

    Google Scholar 

  13. Haynes P.: Stratospheric dynamics. Ann. Rev. Fluid Mech. 37, 263–293 (2005)

    Article  MathSciNet  Google Scholar 

  14. Helmholtz H.: On integrals of the hydrodynamical equations, which express vortex-motion. Phil. Mag. (ser. 4) 33, 485–510 (1858)

    Google Scholar 

  15. Hobson D.D.: A point vortex dipole model of an isolated modon. Phys. Fluids A 3, 3027–3033 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Joseph B., Legras B.: Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex. J. Atmos. Sci. 59, 1198–1212 (2002)

    Article  Google Scholar 

  17. Katok A., Hasselblatt B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, London (1995)

    MATH  Google Scholar 

  18. Kidambi R., Newton P.K.: Motion of three point vortices on a sphere. Physica D 116, 143–175 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kidambi R., Newton P.K.: Streamline topologies for integrable vortex motion on a sphere. Physica D 140, 95–125 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Marcus P.S.: Jupiter’s Great Red Spot and other vortices. Ann. Rev. Astron. Astrophys. 31, 523–573 (1993)

    Article  Google Scholar 

  21. McDonald N.R.: The time-dependent behavior of a spinning disc on a rotating planet: a model for geophysical vortex motion. Geo. Astro. Fluid Dyn. 87, 253–272 (1998)

    Article  MathSciNet  Google Scholar 

  22. McDonald N.R.: The motion of geophysical vortices. Phil. Trans. R. Soc. Lond. A 357, 3427–3444 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Newton, P.K.: The N-vortex problem: analytical techniques. In: Applied Mathematical Science, vol. 145. Springer, New York (2001)

  24. Newton P.K., Ross S.D.: Chaotic advection in the restricted four-vortex problem on a sphere. Physica D (1) 223, 36–53 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Newton P.K., Sakajo T.: The N-vortex problem on a rotating sphere: III. Ring configurations coupled to a background field. Proc. R. Soc. A 463, 961–977 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Newton P.K., Shokraneh H.: The N-vortex problem on a rotating sphere: I multi-frequency configurations. Proc. R. Soc. A 462, 149–169 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Newton P.K., Shokraneh H.: Interacting dipole pairs on a rotating sphere. Proc. R. Soc. A 464(2094), 1525–1541 (2008)

    Article  MathSciNet  Google Scholar 

  28. Nycander J.: Analogy between the drift of planetary vortices and the precession of a spinning body. Plasma Phys. Rep. 22, 771–774 (1996)

    Google Scholar 

  29. Pierrehumbert R.T.: Chaotic mixing of tracer and vorticity by modulated travelling Rossby waves. Geo. Astro. Fluid. Dyn. 58, 285–319 (1991)

    Article  Google Scholar 

  30. Pierrehumbert R.T., Yang H.: Global chaotic mixing on isentropic surfaces. J. Atmos. Sci. 50(15), 2462–2480 (1993)

    Article  Google Scholar 

  31. Polvani L.M., Dritschel D.G.: Wave and vortex dynamics on the surface of a sphere. J. Fluid Mech. 255, 35–64 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ripa P.: Inertial oscillations and the β-plane approximation(s). J. Phys. Oceanogr. 27, 633–647 (1997)

    Article  Google Scholar 

  33. Ripa P.: Effect of the Earth’s curvature on the dynamics of isolated objects Part I: the disk. J. Phys. Oceanogr. 30, 2072–2087 (2000)

    Article  Google Scholar 

  34. Ripa P.: Effect of the Earth’s curvature on the dynamics of isolated objects Part II: the uniformly translating vortex. J. Phys. Oceanogr. 30, 2504–2514 (2000)

    Article  Google Scholar 

  35. Saffman P.G.: Vortex Dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, London (1992)

    Google Scholar 

  36. Sakajo T.: The motion of three point vortices on a sphere. Jpn. J. Ind. Appl. Math. 16, 321–347 (1999)

    Article  MathSciNet  Google Scholar 

  37. Sakajo T.: Integrable four-vortex motion on a sphere with zero moment of vorticity. Phys. Fluids 19(1), 017109 (2007)

    Article  MathSciNet  Google Scholar 

  38. Simmons, A., Mortal, M., Kelly, G., McNally, A., Untch, A., Uppala, S.: ECMWF analysis and forecasts of stratospheric winter polar vortex break-up: September 2002 in the southern hemisphere and related events. J. Atmos. Sci. 62 (2005)

  39. Waugh D.W.: Contour surgery simulations of a forced polar vortex. J. Atmos. Sci. 50, 714–730 (1992)

    Article  Google Scholar 

  40. Waugh D.W., Plumb R.A., Atkinson R.J., Schoeberl M.R., Lait L.R., Newman P.A., Loewenstein M., Tooney D.W., Avallone L.M., Webster C.R., May R.D.: Transport out of the lower stratospheric Arctic vortex by Rossby wave breaking. J. Geo. Res. 99(D1), 1071–1088 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul K. Newton.

Additional information

Communicated by H. Aref

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newton, P.K. The N-vortex problem on a sphere: geophysical mechanisms that break integrability. Theor. Comput. Fluid Dyn. 24, 137–149 (2010). https://doi.org/10.1007/s00162-009-0109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0109-6

Keywords

PACS

Navigation