Skip to main content
Log in

A continuum mechanical theory for turbulence: a generalized Navier–Stokes-α equation with boundary conditions

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We develop a continuum-mechanical formulation and generalization of the Navier–Stokes-α equation based on a recently developed framework for fluid-dynamical theories involving higher-order gradient dependencies. Our flow equation involves two length scales α and β. The first of these enters the theory through the specific free-energy α 2|D|2, where D is the symmetric part of the gradient of the filtered velocity, and contributes a dispersive term to the flow equation. The remaining scale is associated with a dissipative hyperstress which depends linearly on the gradient of the filtered vorticity and which contributes a viscous term, with coefficient proportional to β 2, to the flow equation. In contrast to Lagrangian averaging, our formulation delivers boundary conditions and a complete structure based on thermodynamics applied to an isothermal system. For a fixed surface without slip, the standard no-slip condition is augmented by a wall-eddy condition involving another length scale characteristic of eddies shed at the boundary and referred to as the wall-eddy length. As an application, we consider the classical problem of turbulent flow in a plane, rectangular channel of gap 2h with fixed, impermeable, slip-free walls and make comparisons with results obtained from direct numerical simulations. We find that α/β ~ Re 0.470 and /h ~ Re −0.772, where Re is the Reynolds number. The first result, which arises as a consequence of identifying the specific free-energy with the specific turbulent kinetic energy, indicates that the choice β = α required to reduce our flow equation to the Navier–Stokes-α equation is likely to be problematic. The second result evinces the classical scaling relation η/L ~ Re −3/4 for the ratio of the Kolmogorov microscale η to the integral length scale L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holm D.D., Marsden J.E., Ratiu T.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Holm D.D., Marsden J.E., Ratiu T.: Euler–Poincaré models of ideal fluids with nonlinear dispersian. Phys. Rev. Lett. 80, 4273–4277 (1998)

    Article  Google Scholar 

  3. Chen S., Foias C., Holm D.D., Olson E., Titi E.S., Wynne S.: The Camassa–Holm equations as a closure model for turbulent channel and pipe flow. Phys. Rev. Lett. 81, 5338–5341 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen S., Foias C., Holm D.D., Olson E., Titi E.S., Wynne S.: The Camassa–Holm equations and turbulence. Phys. D 133, 49–65 (1999)

    Article  MathSciNet  Google Scholar 

  5. Chen S., Foias C., Holm D.D., Olson E., Titi E.S., Wynne S.: A connection between the Camassa–Holm equations and turbulent flows in channels and pipes. Phys. Fluids 11, 2343–2353 (1999)

    Article  MathSciNet  Google Scholar 

  6. Holm D.D., Jeffrey C., Kurien S., Livescu D., Taylor M.A., Wingate B.A.: The LANS-α model for computing turbulence: origins, results, and open problems. Los Alamos Sci. 29, 152–171 (2005)

    Google Scholar 

  7. Gurtin M.E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 809–819 (2002)

    Article  MathSciNet  Google Scholar 

  8. Fried E., Gurtin M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small length scales. Arch. Ration. Mech. Anal. 182, 513–554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cosserat E., Cosserat F.: Théorie des Corps Déformables. Hermann, Paris (1909)

    Google Scholar 

  10. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  11. Toupin R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  12. Toupin R.A.: Theory of elasticity with couple stresses. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  13. Foias, C., Holm, D.D., Titi, E.S.: The Navier–Stokes-alpha model offluid turbulence. Phys. D 152–153, 505–519 (2001)

    Google Scholar 

  14. Rivlin R.S., Ericksen J.L.: Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955)

    MathSciNet  Google Scholar 

  15. Truesdell, C.A., Noll, W.: The non-linear field theories ofmechanics. In: Flügge, S. (ed.) Handbuch der Physik III/3. Springer, Berlin (1965)

  16. Rivlin R.S.: The relation between the flow of non-Newtonian fluids and turbulent Newtonian fluids. Q. Appl. Math. 15, 212–215 (1957)

    MATH  MathSciNet  Google Scholar 

  17. Rivlin R.S.: Correction to my paper: the relation between the flow of non-Newtonian fluids and turbulent Newtonian fluids. Q. Appl. Math. 17, 447 (1960)

    Google Scholar 

  18. Dunn J.E., Fosdick R.L.: Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Ration. Mech. Anal. 56, 191–252 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pope S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Kim J., Moin P., Moser R.D.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  21. Moser R.D., Kim C.S., Mansour S.: Direct numerical simulation of turbulent flow up to Re τ  = 590. Phys. Fluids 11, 943–945 (1999)

    Article  Google Scholar 

  22. Blasius P.R.H.: Das Ähnlichkeitsgesetz bei ReibungsvorgÄngen in Flüssigkeiten. Forschg. Arb. Ing.-Wes. 131, 1–39 (1913)

    Google Scholar 

  23. Kolmogorov A.N.: The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk S.S.S.R. 30, 301–305 (1941)

    Google Scholar 

  24. Kolmogorov A.N.: On degeneration of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR 31, 538–540 (1941)

    Google Scholar 

  25. Kolmogorov A.N.: Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18 (1941)

    Google Scholar 

  26. Das S.K., Tanahashi M., Shoji K., Miyauchi T.: Statistical properties of coherent fine eddies in wall-bounded turbulent flows by direct numerical simulation. Theor. Comput. Fluid Dyn. 20, 55–71 (2006)

    Article  MATH  Google Scholar 

  27. Cermelli P., Fried E., Gurtin M.E.: Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces. J. Fluid Mech. 544, 339–351 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Murdoch A.I.: Objectivity in classical continuum physics: arationale for discarding the ‘principle of invariance undersuperposed rigid body motions’ in favour of purely objectiveconsiderations. Continuum Mech. Thermodyn. 15, 309–320(2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gurtin M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  30. Anderson D.M., Cermelli P., Fried E., Gurtin M.E., McFadden G.B.: General dynamical sharp-interface conditions for phase transformations in viscous heat-conducting fluids. J. Fluid Mech. 581, 323–370 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Fried E., Gurtin M.E.: Thermomechanics of the interface between a body and its environment. Continuum Mech. Thermodyn. 19, 253–271 (2007)

    Article  MathSciNet  Google Scholar 

  32. Richardson L.F.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  33. Cermelli P., Gurtin M.E.: On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539–1568 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliot Fried.

Additional information

Communicated by D. D. Holm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fried, E., Gurtin, M.E. A continuum mechanical theory for turbulence: a generalized Navier–Stokes-α equation with boundary conditions. Theor. Comput. Fluid Dyn. 22, 433–470 (2008). https://doi.org/10.1007/s00162-008-0083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-008-0083-4

Keywords

PACS

Navigation