Skip to main content
Log in

Nonlinear dynamics of hydrostatic internal gravity waves

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Stratified hydrostatic fluids have linear internal gravity waves with different phase speeds and vertical profiles. Here a simplified set of partial differential equations (PDE) is derived to represent the nonlinear dynamics of waves with different vertical profiles. The equations are derived by projecting the full nonlinear equations onto the vertical modes of two gravity waves, and the resulting equations are thus referred to here as the two-mode shallow water equations (2MSWE). A key aspect of the nonlinearities of the 2MSWE is that they allow for interactions between a background wind shear and propagating waves. This is important in the tropical atmosphere where horizontally propagating gravity waves interact together with wind shear and have source terms due to convection. It is shown here that the 2MSWE have nonlinear internal bore solutions, and the behavior of the nonlinear waves is investigated for different background wind shears. When a background shear is included, there is an asymmetry between the east- and westward propagating waves. This could be an important effect for the large-scale organization of tropical convection, since the convection is often not isotropic but organized on large scales by waves. An idealized illustration of this asymmetry is given for a background shear from the westerly wind burst phase of the Madden–Julian oscillation; the potential for organized convection is increased to the west of the existing convection by the propagating nonlinear gravity waves, which agrees qualitatively with actual observations. The ideas here should be useful for other physical applications as well. Moreover, the 2MSWE have several interesting mathematical properties: they are a system of nonconservative PDE with a conserved energy, they are conditionally hyperbolic, and they are neither genuinely nonlinear nor linearly degenerate over all of state space. Theory and numerics are developed to illustrate these features, and these features are important in designing the numerical scheme. A numerical method is designed with simplicity and minimal computational cost as the main design principles. Numerical tests demonstrate that no catastrophic effects are introduced when hyperbolicity is lost, and the scheme can represent propagating discontinuities without introducing spurious oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Majda A.J.: Introduction to PDEs and waves for the atmosphere and ocean, Courant Lecture Notes in Mathematics, vol. 9. American Mathematical Society, Providence (2003)

    Google Scholar 

  2. Vallis G.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press, New York (2006)

    Google Scholar 

  3. Emanuel K.A.: Atmospheric Convection. Oxford University Press, USA (1994)

    Google Scholar 

  4. Majda A.J.: New multi-scale models and self-similarity in tropical convection. J. Atmos. Sci. 64, 1393–1404 (2007)

    Article  Google Scholar 

  5. Baldwin M., Gray L., Dunkerton T., Hamilton K., Haynes P., Randel W., Holton J., Alexander M., Hirota I., Horinouchi T., Jones D., Kinnersly J., Marquardt C., Sato K., Takahashi M.: The quasi-biennial oscillation. Rev. Geophys. 39(2), 179–229 (2001)

    Article  Google Scholar 

  6. Zhang, C.: Madden–Julian oscillation. Reviews of Geophysics 43, G2003+ (2005). doi:10.1029/2004RG000158

  7. Nakazawa T.: Tropical super clusters within intraseasonal variations over the western Pacific. J. Met. Soc. Japan 66(6), 823–839 (1988)

    Google Scholar 

  8. Wheeler M., Kiladis G.N.: Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci. 56(3), 374–399 (1999)

    Article  Google Scholar 

  9. Houze, R.A.: Mesoscale convective systems. Rev. Geophys. 42, G4003+ (2004). doi:10.1029/2004RG000150

  10. Mapes B.: Gregarious tropical convection. J. Atmos. Sci. 50(13), 2026–2037 (1993)

    Article  Google Scholar 

  11. Tulich S., Mapes B.: Multi-scale convective wave disturbances in the Tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci. 65(1), 140–155 (2008)

    Article  Google Scholar 

  12. Tompkins A.: Organization of tropical convection in low vertical wind shears: the role of cold pools. J. Atmos. Sci. 58(13), 1650–1672 (2001)

    Article  Google Scholar 

  13. Gamache J., Houze R. Jr: Mesoscale air motions associated with a tropical squall line. Mon. Weather Rev. 110(2), 118–135 (1982)

    Article  Google Scholar 

  14. Mapes B.E., Houze R.A. Jr: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci 52, 1807–1828 (1995)

    Article  Google Scholar 

  15. Haertel P.T., Kiladis G.N.: Dynamics of 2-day equatorial waves. J. Atmos. Sci. 61, 2707–2721 (2004)

    Article  Google Scholar 

  16. Tulich S.N., Randall D., Mapes B.: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci. 64, 1210–1229 (2007)

    Article  Google Scholar 

  17. Mapes B.E.: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci. 57, 1515–1535 (2000)

    Article  Google Scholar 

  18. Khouider B., Majda A.J.: A simple multicloud parameterization for convectively coupled tropical waves. Part I. Linear analysis. J. Atmos. Sci. 63, 1308–1323 (2006)

    Article  MathSciNet  Google Scholar 

  19. Khouider B., Majda A.J.: A simple multicloud parameterization for convectively coupled tropical waves. Part II. Nonlinear simulations. J. Atmos. Sci. 64, 381–400 (2007)

    Article  Google Scholar 

  20. Khouider B., Majda A.J.: Model multicloud parameterizations for convectively coupled waves: Detailed nonlinear wave evolution. Dyn. Atmos. Oceans 42, 59–80 (2006)

    Article  Google Scholar 

  21. Khouider B., Majda A.J.: Multicloud convective parameterizations with crude vertical structure. Theor. Comput. Fluid Dyn. 20, 351–375 (2006)

    Article  Google Scholar 

  22. Khouider B., Majda A.J.: Multicloud models for organized tropical convection: enhanced congestus heating. J. Atmos. Sci. 65(3), 895–914 (2008)

    Article  Google Scholar 

  23. Majda A.J., Stechmann S.N., Khouider B.: Madden–Julian oscillation analog and intraseasonal variability in a multicloud model above the equator. Proc. Natl. Acad. Sci. 104(24), 9919–9924 (2007)

    Article  Google Scholar 

  24. Moncrieff M., So D.: A hydrodynamical theory of conservative bounded density currents. J. Fluid Mech. 198, 177–197 (1989)

    Article  MATH  Google Scholar 

  25. Xu Q., Moncrieff M.: Density current circulations in shear flows. J. Atmos. Sci. 51(3), 434–446 (1994)

    Article  Google Scholar 

  26. Klemp J., Rotunno R., Skamarock W.: On the dynamics of gravity currents in a channel. J. Fluid Mech. 269, 169–198 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Klemp J., Rotunno R., Skamarock W.: On the propagation of internal bores. J. Fluid Mech. 331, 81–106 (1997)

    Article  MATH  Google Scholar 

  28. Grabowski W.W., Wu X., Moncrieff M.W.: Cloud-resolving modeling of tropical cloud systems during Phase III of GATE. Part I. Two-dimensional experiments. J. Atmos. Sci. 53, 3684–3709 (1996)

    Article  Google Scholar 

  29. LeMone M., Zipser E., Trier S.: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci. 55(23), 3493–3518 (1998)

    Article  Google Scholar 

  30. Xue M.: Density currents in shear flows: Effects of rigid lid and cold-pool internal circulation, and application to squall line dynamics. Quart. J. Roy. Meteor. Soc. 128, 47–73 (2002)

    Article  Google Scholar 

  31. Majda A.J., Biello J.A.: The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci. 60, 1809–1821 (2003)

    Article  MathSciNet  Google Scholar 

  32. Khouider B., Majda A.J.: A non-oscillatory balanced scheme for an idealized tropical climate model. Part I. Algorithm and validation. Theor. Comput. Fluid Dyn. 19(5), 331–354 (2005)

    Article  MATH  Google Scholar 

  33. Khouider B., Majda A.J.: A non-oscillatory balanced scheme for an idealized tropical climate model. Part II. Nonlinear coupling and moisture effects. Theor. Comput. Fluid Dyn. 19(5), 355–375 (2005)

    Article  MATH  Google Scholar 

  34. Abgrall, R., Karni, S.: Two-layer shallow water systems: a relaxation approach. Submitted to SIAM J. Sci. Comput. (2007)

  35. Ripa P.: On improving a one-layer ocean model with thermodynamics. J. Fluid Mech. 303, 169–201 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Schwendeman D., Wahle C., Kapila A.: The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212(2), 490–526 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Deledicque V., Papalexandris M.: An exact Riemann solver for compressible two-phase flow models containing non-conservative products. J. Comput. Phys. 222(1), 217–245 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Evans L.: Partial Differential Equations. American Mathematical Society, USA (1998)

    MATH  Google Scholar 

  39. LeVeque R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, London (2002)

    MATH  Google Scholar 

  40. Dal Maso G., LeFloch P., Murat F.: Definition and weak stability of nonconservative products. J. Math. Pure Appl. 74(6), 483–548 (1995)

    MATH  MathSciNet  Google Scholar 

  41. LeFloch, P.G., Tzavaras, A.E.: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30(6), 1309–1342 (1999). doi:10.1137/S0036141098341794. http://link.aip.org/link/?SJM/30/1309/1

  42. Crasta G., LeFloch P.: Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Commun. Pure Appl. Anal. 1, 1–18 (2002)

    MathSciNet  Google Scholar 

  43. Bianchini S.: On the Riemann problem for non-conservative hyperbolic systems. Arc. Ration. Mech. Anal. 166(1), 1–26 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  44. Toumi I.: A weak formulation of Roe’s approximate Riemann solver. J. Comput. Phys. 102(2), 360–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  45. Pares C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44(1), 300–321 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  46. Nessyahu H., Tadmor E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  47. Jiang G.S., Tadmor E.: Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19(6), 1892–1917 (1998). doi:10.1137/S106482759631041X

    Article  MATH  MathSciNet  Google Scholar 

  48. Strang G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  49. Charney J.G., Eliassen A.: On the growth of the hurricane depression. J. Atmos. Sci. 21, 68–75 (1964)

    Article  Google Scholar 

  50. Majda A.: Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol. 53. Springer, New York (1984)

    Google Scholar 

  51. Lax P.D.: Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math. 10, 537–566 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  52. Bretherton C.S., Smolarkiewicz P.K.: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci. 46(6), 740–759 (1989)

    Article  Google Scholar 

  53. Nicholls M., Pielke R., Cotton W.: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci. 48(16), 1869–1884 (1991)

    Article  Google Scholar 

  54. Pandya R., Durran D., Bretherton C.: Comments on “thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci. 50(24), 4097–4101 (1993)

    Article  Google Scholar 

  55. Lac C., Lafore J., Redelsperger J.: Role of gravity waves in triggering deep convection during TOGA COARE. J. Atmos. Sci. 59(8), 1293–1316 (2002)

    Article  Google Scholar 

  56. Lin X., Johnson R.H.: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci. 53, 695–715 (1996)

    Article  Google Scholar 

  57. Wu X., LeMone M.: Fine structure of cloud patterns within the intraseasonal oscillation during toga coare. Mon. Weather Rev. 127(10), 2503–2513 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel N. Stechmann.

Additional information

Communicated by R. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stechmann, S.N., Majda, A.J. & Khouider, B. Nonlinear dynamics of hydrostatic internal gravity waves. Theor. Comput. Fluid Dyn. 22, 407–432 (2008). https://doi.org/10.1007/s00162-008-0080-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-008-0080-7

Keywords

PACS

Navigation