Theoretical and Computational Fluid Dynamics

, Volume 21, Issue 2, pp 147–153 | Cite as

On the added mass force at finite Reynolds and acceleration numbers

Original Article

Abstract

Numerical simulations of flow around a rigid sphere, subjected to a sudden acceleration (or deceleration) in relative velocity, are considered. Particular attention is paid to the interaction between the imposed sudden acceleration and a preexisting finite Re wake. The results clearly establish the independence of added mass coefficient to the acceleration number and to the state of flow prior to acceleration. A simple reasoning based on the different time scales of the flow is given.

PACS

47.55.Kf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batchelor G. (1967). An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge MATHGoogle Scholar
  2. 2.
    Landau L. and Lifshitz E. (1959). Course of Theoretical Physics. Volume 6: Fluid Mechanics. Pergamon, Oxford Google Scholar
  3. 3.
    Lovalenti P. and Brady J. (1993). J. Fluid Mech. 256: 561 MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Mei R., Lawrence C. and Adrian R. (1991). J. Fluid Mech. 233: 613 MATHCrossRefADSGoogle Scholar
  5. 5.
    Mei R. (1993). Int. J. Multiphase Flow 19: 509 CrossRefGoogle Scholar
  6. 6.
    Odar F. and Hamilton W. (1964). J. Fluid Mech. 18: 302 MATHCrossRefADSGoogle Scholar
  7. 7.
    Odar F. and Hamilton W. (1966). J. Fluid Mech. 25: 591 CrossRefADSGoogle Scholar
  8. 8.
    Cheng, L., Drew, D., Lahey, R.: Virtual Mass Effects in Two-Phase Flow, NUREG/CR-0020. U.S. Nuclear Regulatory Commission (1978)Google Scholar
  9. 9.
    Rivero M., Magnaudet J. and Fabre J. (1991). C.R. Acad. Sci. Paris Ser. II 312: 1499 MATHGoogle Scholar
  10. 10.
    Chang E. and Maxey M. (1995). J. Fluid Mech. 303: 133 MATHCrossRefADSGoogle Scholar
  11. 11.
    Howe M. (1995). Q. J. Appl. Mech. App. Math. 48: 401 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mougin G. and Magnaudet J. (2002). Int. J. Multiphase Flow 28: 1837 CrossRefGoogle Scholar
  13. 13.
    Bagchi P. and Balachandar S. (2002). J. Fluid Mech. 466: 365 MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Bagchi P. and Balachandar S. (2003). J. Fluid Mech. 481: 105 MATHCrossRefADSGoogle Scholar
  15. 15.
    Mittal R. and Balachandar S. (1996). J. Comput. Phys. 124: 351 MATHCrossRefGoogle Scholar
  16. 16.
    Bagchi P. and Balachandar S. (2002). Phys. Fluids 14: 2719 CrossRefADSGoogle Scholar
  17. 17.
    Chang E. and Maxey M. (1994). J. Fluid Mech. 277: 347 MATHCrossRefADSGoogle Scholar
  18. 18.
    Alassar R.S., Badr H.M. and Allaya R. (2000). Comput. Mech. 26: 409 MATHCrossRefGoogle Scholar
  19. 19.
    Hunt J. and Eames I. (2002). J. Fluid Mech. 457: 111 MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Auton T.R., Hunt J.C.R. and Prudhomme M. (1988). J. Fluid Mech. 197: 241 MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Wakaba L. and Balachandar S. (2005). Int. J. Multiphase Flow 31: 996 Google Scholar
  22. 22.
    Legendre D. and Magnaudet J. (1998). J. Fluid Mech. 368: 81 MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Theoretical and Applied MechanicsUniversity of IllinoisUrbana-ChampaignUSA

Personalised recommendations