Skip to main content
Log in

Vector potential–vorticity relationship for the Stokes flows: application to the Stokes eigenmodes in 2D/3D closed domain

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The unsteady dynamics of the Stokes flows, where \(\vec{\nabla}^{2} \left(\frac{p}{\rho}\right) =0\), is shown to verify the vector potential–vorticity ( \(\vec{\psi},\,\vec{\omega}\)) correlation \(\frac{\partial\vec{\psi}}{\partial t}+\nu\,\vec{\omega}+\vec{\Pi}=0\), where the field \(\vec{\Pi}\) is the pressure-gradient vector potential defined by \(\vec{\nabla} \left(\frac{p}{\rho}\right)=\vec{\nabla}\times\vec{\Pi}\). This correlation is analyzed for the Stokes eigenmodes, \(\frac{\partial\vec{\psi}}{\partial t}=\lambda\,\vec{\psi}\), subjected to no-slip boundary conditions on any two-dimensional (2D) closed contour or three-dimensional (3D) surface. It is established that an asymptotic linear relationship appears, verified in the core part of the domain, between the vector potential and vorticity, \(\nu\,\left(\vec{\omega}-\vec{\omega}_0\right)=-\lambda\,\vec{\psi}\), where \(\vec{\omega}_0\) is a constant offset field, possibly zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor G.K. (1956) On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1:177–190

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967) (reprint 1994)

  3. Batoul A., Khallouf H., Labrosse G. (1994) Une Méthode de Résolution Directe (Pseudo-Spectrale) du Problème de Stokes 2D/3D Instationnaire. Application à la Cavité Entrainée Carrée. C. R. Acad. Sci. Paris, 319(I):1455–1461

    MATH  Google Scholar 

  4. Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A. (1988) Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, Berlin Heidelberg New York

    Google Scholar 

  5. Constantin P., Foias C. (1988) Navier–Stokes equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago

    Google Scholar 

  6. Gottlieb D., Orszag S.A. (1977) Numerical Analysis of Spectral Methods: Theory and Applications. SIAM–CBMS, Philadelphia

    Google Scholar 

  7. Hirasaki G.J., Hellums J.D. (1970) Boundary conditions on the vector and scalar potentials in viscous three-dimensional hydrodynamics. Q. Appl. Math. XXVIII(2):293–296

    Google Scholar 

  8. Leriche E., Labrosse G. (2000) High-order direct Stokes solvers with or without temporal splitting: numerical investigations of their comparative properties. SIAM J. Sci. Comput. 22(4):1386–1410

    Article  MATH  MathSciNet  Google Scholar 

  9. Leriche E., Labrosse G. (2004) Stokes eigenmodes in square domain and the stream function–vorticity correlation. J. Comput. Phys. 200(2):489–511

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Leriche E., Labrosse G. (2005) Fundamental Stokes eigenmodes in the square: which expansion is more accurate, Chebyshev or Reid–Harris? Numer. Algorithms 38(1,2):111–131

    Article  MATH  MathSciNet  Google Scholar 

  11. Leriche, E., Lallemand, P., Labrosse, G.: Stokes eigenmodes in cubic domain: primitive variable and lattice Boltzmann formulations. Appl. Numer. Math. (2006) (in press)

  12. Orszag S.A., Israeli M., Deville M. (1986) Boundary conditions for incompressible flows. J. Sci. Comput. 1(1):75–111

    Article  MATH  Google Scholar 

  13. Taylor G.I. (1933) The Buckling load for a rectangular plate with four clamped edges. Ztschr. f. Angew. Math. Mech. 13(2):147–152

    MATH  Google Scholar 

  14. Temam, R.: Navier–Stokes equations: theory and numerical analysis. Studies in Mathematics and its Applications, vol. 2(3). North-Holland, Amsterdam (1984)

  15. van de Konijnenberg, J.A.: Spin-up in non-axisymmetric containers. Ph.D. Thesis, Eindhoven University of Technology, 1995

  16. van de Konijnenberg J.A., Flor J.B., van Heijst G.J.F. (1998) Decaying quasi-two-dimensional viscous flow on a square domain. Phys. Fluids 10(3):595–606

    Article  MathSciNet  ADS  Google Scholar 

  17. Yin Z., Montgomery D.C., Clercx H.J.H. (2003) Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of “patches” and “points”. Phys. Fluids 15(7):1937–1953

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Leriche.

Additional information

Communicated by T. Colonius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leriche, E., Labrosse, G. Vector potential–vorticity relationship for the Stokes flows: application to the Stokes eigenmodes in 2D/3D closed domain. Theor. Comput. Fluid Dyn. 21, 1–13 (2007). https://doi.org/10.1007/s00162-006-0037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-006-0037-7

Keywords

PACS

Navigation