Theoretical and Computational Fluid Dynamics

, Volume 20, Issue 5–6, pp 305–322 | Cite as

A simple equilibrium model for shallow-cumulus-topped mixed layers

  • Roel NeggersEmail author
  • Bjorn Stevens
  • J. David. Neelin
Original Article


A new equilibrium model for shallow-cumulus-topped mixed layers is presented. A variant on the w * closure for the shallow-cumulus mass flux is applied that retains the convective area-fraction in its formulation. As opposed to being constant, the fraction is explicitly modeled using a statistical closure as a function of the saturation deficit and humidity variance at cloud base. As a consequence, important new interactions are introduced between the convective transport, humidity, and depth of the mixed layer. This mechanism, which we call the mass-flux humidity feedback, helps determine the character of the equilibrium state such that the mixed-layer top is maintained close to the cloud-base height. Due to the strong sensitivity of the mass flux to the area fraction, the latter thus acts as a regulator or valve mechanism on moist convective transport. As a consequence, the mixed-layer model is able to explain the robustness of many aspects of the shallow-cumulus boundary layer that is typically found in observations and large-eddy simulations (LESs). The model is evaluated for a single-LES case as well as for global climatology obtained from a 40-year reanalysis of meteorological data by the European Centre for Medium-range Weather Forecasts (ECMWF). LES characteristics of convective mass flux, cloud fraction, humidity variance, cloud-base height, and surface fluxes of heat and humidity are reproduced. The solution on reanalysis fields reproduces the spatial structure of mixed-layer temperature and humidity and their associated surface fluxes in the subtropical Atlantic and Pacific trade wind regions. Furthermore, the spatial structure of the convective area-fraction matches that of synoptic surface observations of frequency of occurrence of shallow cumulus. Particularly striking is the smooth onset of the convective area-fraction and mass flux along the trade-wind trajectory that is reproduced, from zero to typical trade-wind values. The cumulus onset represents the necessity for shallow-cumulus mass flux to occur in order to close the mixed-layer budgets of heat, moisture, and mass, as a response to the changing magnitude of large-scale subsidence and free tropospheric humidity along the trajectory. Finally, the mass flux model is implemented in an intermediate-complexity tropical climate model to study its behavior when fully interactive with the larger-scale flow. A climate run then shows that the model is stable, due to the mass-flux humidity feedback acting to keep the shallow-cumulus boundary layer close to its equilibrium state for long, climatological timescales.


Atmospheric boundary layer Shallow cumulus Mass flux Equilibrium 


92.60.Fm Boundary layer structure and processes Convection turbulence and diffusion 92.60.Nv Cloud physics and chemistry 92.60Aa Modeling and model calibration 92.70.Np Global climate modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albrecht B.A., Betts A.K., Schubert W.H., Cox S.K. (1979): A model of the thermodynamic structure of the Trade-wind boundary layer. Part I: Theoretical formulation and sensitivity tests. J. Atmos. Sci. 36, 73–89CrossRefADSGoogle Scholar
  2. 2.
    Albrecht B.A., Bretherton C.S., Johnson D., Schubert W.H., Frisch A.S. (1995): The Atlantic stratocumulus transition experiment—ASTEX. Bull. Am. Meteorol. Soc. 76, 889–904CrossRefADSGoogle Scholar
  3. 3.
    Anthes R.A., Keyser D. (1979): Tests of a fine-mesh model over Europe and the United States. Mon. Wea. Rev. 107, 963–984CrossRefGoogle Scholar
  4. 4.
    Augstein E., Riehl H., Ostapoff F., Wagner V. (1973): Mass and energy transports in an undisturbed Atlantic trade-wind flow. Mon. Wea. Rev. 101, 101–111Google Scholar
  5. 5.
    Augstein E., Schmidt H., Wagner V. (1974): The vertical structure of the atmospheric planetary boundary layer in undisturbed Trade winds over the Atlantic Ocean. Bound. Layer Meteorol. 6, 129–150CrossRefADSGoogle Scholar
  6. 6.
    Berg L.K., Stull R.B. (2004): Parameterization of joint frequency distributions of potential temperature and water vapor mixing ratio in the daytime convective boundary layer. J. Atmos. Sci. 61, 813–828CrossRefADSGoogle Scholar
  7. 7.
    Betts A.K. (1973): Non-precipitating cumulus convection and its parameterization. Q. J. R. Meteorol. Soc. 99, 178–196CrossRefADSGoogle Scholar
  8. 8.
    Betts A.K. (1976): Modeling subcloud layer structure and interaction with a shallow cumulus layer. J. Atmos. Sci. 33, 2363–2382Google Scholar
  9. 9.
    Betts A.K., Ridgway W. (1989): Climatic equilibrium of the atmospheric convective boundary layer over the tropical ocean. J. Atmos. Sci. 46, 2621–2641CrossRefADSGoogle Scholar
  10. 10.
    Bretherton C.S., Wyant M.C. (1997): Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci. 54, 148–167CrossRefADSGoogle Scholar
  11. 11.
    Bretherton C.S., McCaa J.R., Grenier H. (2004): A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: description and 1D results. Mon. Wea. Rev. 132, 864–882CrossRefGoogle Scholar
  12. 12.
    Brown A.R., Chlond A., Golaz C., Khairoutdinov M., Lewellen D.C., Lock A.P., MacVean M.K. Moeng C-H., Neggers R.A.J., Siebesma A.P., Stevens B. (2002): Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q. J. R. Meteorol. Soc. 128, 1075–1094CrossRefADSGoogle Scholar
  13. 13.
    Cheinet S. (2004): A multiple mass flux parameterization for the surface-generated convection. Part II: Cloudy cores. J. Atmos. Sci. 61, 1093–1113CrossRefADSGoogle Scholar
  14. 14.
    Cuijpers H., Duynkerke P.G. (1993): Large-eddy simulation of trade-wind cumulus clouds. J. Atmos. Sci. 50, 3894–3908CrossRefADSGoogle Scholar
  15. 15.
    Cuijpers H., Bechtold P. (1995): A simple parameterization of cloud water related variables for use in boundary layer models. J. Atmos. Sci. 52, 2486–2490CrossRefADSGoogle Scholar
  16. 16.
    Deardorff J.W. (1970): Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci. 27, 1211–1212CrossRefADSGoogle Scholar
  17. 17.
    Garratt J.R. (1977): Review of drag coefficients over oceans and continents. Mon. Wea. Rev. 105, 915–929CrossRefGoogle Scholar
  18. 18.
    Grant A.L.M. (2001): Cloud-base fluxes in the cumulus-capped boundary layer. Q. J. Roy. Meteorol. Soc. 127, 407–422CrossRefADSGoogle Scholar
  19. 19.
    Grant A.L.M., Brown A.R. (1999): A similarity hypothesis for shallow-cumulus transports. Q. J. R. Meteorol. Soc. 125, 1913–1936CrossRefADSGoogle Scholar
  20. 20.
    Holland J.Z., Rasmusson E.M. (1973): Measurement of atmospheric mass, energy and momentum budgets over a 500-kilometer square of tropical ocean. Mon. Wea. Rev. 101, 44–55Google Scholar
  21. 21.
    Lenderink G., Siebesma P., Cheinet S., Irons S., Jones C.G., Marquet P., Müller F., Olmeda D., Calvo J., Sanchez E., Soares P.M.M. (2004): The diurnal cycle of shallow cumulus clouds over land: a single column model intercomparison study. Q. J. R. Meteorol. Soc. 130, 3339–3364CrossRefADSGoogle Scholar
  22. 22.
    Lilly D.K. (1968): Models of cloud-topped mixed layers under a strong inversion. Q. J. R. Meteorol. Soc. 84, 292–309Google Scholar
  23. 23.
    Neelin J.D., Zeng N. (2000): A quasi-equilibrium tropical circulation model–formulation. J. Atmos. Sci. 57, 1741–1766CrossRefADSGoogle Scholar
  24. 24.
    Neggers R.A.J., Siebesma A.P., Lenderink G., Holtslag A.A.M. (2004): An evaluation of mass flux closures for diurnal cycles of shallow cumulus. Mon. Wea. Rev. 132, 2525–2538CrossRefGoogle Scholar
  25. 25.
    Neggers, R.A.J., Stevens, B., Neelin, J.D.: Variance scaling in shallow cumulus topped mixed layers. Q. J. R. Meteorol. Soc. August 2006 (submitted)Google Scholar
  26. 26.
    Neggers, R.A.J., Neelin, J.D., Stevens, B.: Impact mechanisms of shallow cumulus convection on tropical climate dynamics. J. Clim. July 2006 (accepted pending minor revisions)Google Scholar
  27. 27.
    Nicholls S., LeMone M.A. (1980): The fair weather boundary layer in GATE: the relationship of subcloud fluxes and structure to the distribution and enhancement of cumulus clouds. J. Atmos. Sci. 37, 2051–2067CrossRefADSGoogle Scholar
  28. 28.
    Nitta T., Esbensen S. (1974): Heat and moisture budget analyses using BOMEX data. Mon. Wea. Rev. 102, 17–28CrossRefGoogle Scholar
  29. 29.
    Norris J.R. (1998): Low cloud type over the ocean from surface observations. Part II: geographical and seasonal variations. J. Clim. 11, 383–403CrossRefADSGoogle Scholar
  30. 30.
    Ooyama K. (1971): A theory on parameterization of cumulus convection. J. Meteorol. Soc. Jpn. 49, 744–756Google Scholar
  31. 31.
    Riehl H., Yeh C., Malkus J.S., LaSeur N.E. (1951): The northeast trade of the Pacific Ocean. Q. J. R. Meteor. Soc. 77, 598–626Google Scholar
  32. 32.
    Schubert W.H. (1976): Experiments with Lilly’s cloud-topped mixed layer model. J. Atmos. Sci. 33, 436–446CrossRefADSGoogle Scholar
  33. 33.
    Siebesma A.P., Cuijpers (1995): Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci. 52, 650–666CrossRefADSGoogle Scholar
  34. 34.
    Siebesma A.P., Bretherton C.S., Brown A., Chlond A., Cuxart J., Duynkerke P.G., Jiang H., Khairoutdinov M., Lewellen D., Moeng C.-H., Sanchez E., Stevens B., Stevens D.E. (2003): A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci. 60, 1201–1219CrossRefADSGoogle Scholar
  35. 35.
    Siebesma A.P., Jakob C., Lenderink G., Neggers R.A.J., Teixeira J., Van Meijgaard E., Calvo J., Chlond A., Grenier H., Jones C., Koehler M., Kitagawa H., Marquet P., Lock A.P., Muller F., Olmeda D., Severijns C. (2004): Cloud representation in general-circulation models over the northern Pacific Ocean: a EUROCS intercomparison study. Q. J. R. Meteorol. Soc. 130, 1–23CrossRefGoogle Scholar
  36. 36.
    Sommeria G., Deardorff J.W. (1977): Subgrid-scale condensation in models of non-precipitating clouds. J. Atmos. Sci. 34, 344–355CrossRefADSGoogle Scholar
  37. 37.
    Stevens, B.: Boundary layer concepts for simplified models of tropical dynamics. Theor. Comput. Fluid Dyn. (in press) (2006)Google Scholar
  38. 38.
    Stevens B., Ackerman A.S., Albrecht B.A., Brown A.R., Chlond A., Cuxart J., Duynkerke P.G., Lewellen D.C., MacVean M.K., Neggers R.A.J., Sanchez E., Siebsema A.P., Stevens D.E. (2001): Simulations of Trade-wind cumuli under a strong inversion. J. Atmos. Sci. 58, 1870–1891CrossRefADSGoogle Scholar
  39. 39.
    Stull R.B. (1988): An introduction to boundary layer meteorology. Kluwer, DordrechtzbMATHGoogle Scholar
  40. 40.
    Yanai M., Esbensen S., Cho J.H. (1973): Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 30, 611–627CrossRefADSGoogle Scholar
  41. 41.
    Yin B., Albrecht B.A. (2000): Spatial variability of atmospheric boundary layer structure over the eastern equatorial Pacific. J. Clim. 13, 1574–1592CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Roel Neggers
    • 1
    • 2
    Email author
  • Bjorn Stevens
    • 1
  • J. David. Neelin
    • 1
  1. 1.Department of Atmospheric and Oceanic SciencesUniversity of California at Los Angeles (UCLA)Los AngelesUSA
  2. 2.European Centre for Medium-range Weather Forecasts (ECMWF)ReadingUK

Personalised recommendations