Skip to main content
Log in

3D Steady and Unsteady Bifurcations in a Shock-wave/Laminar Boundary Layer Interaction: A Numerical Study

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The principal objective of this paper is to study some unsteady characteristics of an interaction between an incident oblique shock wave impinging a laminar boundary layer developing on a plate plane. More precisely, this paper shows that some unsteadiness, in particular the low frequency unsteadiness, originate in a supercritical Hopf bifurcation related to the dynamics of the separated boundary layer and not necessarily to the coherent structures resulting from the turbulent character of the boundary layer crossing the shock wave. Numerical computations of a shock-wave/laminar boundary-layer interaction (SWBLI) have been compared with a classical test case (Degrez test case) and both two-dimensional and three-dimensional (3D) unsteady Navier–Stokes equations are numerically solved with an implicit dual time stepping for the temporal algorithm and high order AUSM+ scheme for the spatial discretization. A parametric study on the oblique shock-wave angle has been performed to characterize the unsteady behaviour onset. Finally, discussions and assumptions are made about the origin of the 3D low frequency unsteadiness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lighthill M.J. (1950) Reflection at a laminar boundary-layer of a weak steady disturbance to a supersonic stream neglecting viscosity and heat conduction. Q J. Mech. Appl. Math. 3, 303

    Article  MATH  MathSciNet  Google Scholar 

  2. Lighthill M.J. (1953) On the boundary layer upstream influence ii supersonic flows without separation. Proc R Soc A 217, 478–507

    Article  Google Scholar 

  3. Ribner, H.S. Convection of pattern of vorticity through a shock wave. 2: Technical report, NASA 1953

  4. Kovasznay L.S.G. (1953) Turbulence in supersonic flow. J. Aero Sci. 20, 657–682

    Google Scholar 

  5. Morkovin, M.V. Effects of compressibility on turbulent flows. In: International symposium. on the Mécanique de la turbulence, Paris France, pp. 367–380 1962

  6. Debiève, J.F., Lacharme, J.P. A shock-wave/free turbulence interaction. Turbulent shear layer/shock wave interaction, IUTAM symposium Palaiseau, pp. 392–403 (1985)

  7. Green J.E. (1970) Reflexion of an oblique shock wave by a turbulent boundary layer. J. Fluid Mech. 40, 81–95

    Article  Google Scholar 

  8. Dolling D.S. (2001) Fifty years of shock-wave/boundary-layer interaction research: what next. AIAA J. 39, 8

    Article  Google Scholar 

  9. Smits A.J., Muck K.C. (1987) Experimental study of three shock wave/turbulent boundary layer interactions. J. Fluid Mech. 182, 291–314

    Article  Google Scholar 

  10. Plotkin K.J. (1975) Shock wave oscillation driven by turbulent boundary-layer fluctuations. AIAA J. 13, 1036–1040

    Article  Google Scholar 

  11. Thomas F.O., Putnam C.M., Chu H.C. (1994) On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions. Exp. Fluids 18, 69–81

    Article  Google Scholar 

  12. Dolling D.S., Or C.T. (1985) Unsteadiness of the shock wave structure in attached and separated compression ramp flow. Exp. Fluids 3, 24–32

    Article  Google Scholar 

  13. Selig M.S., Smits A.J. (1991) Effect of periodic blowing on attached and separated supersonic turbulent boundary layer. AIAA J. 29, 1651–1658

    Article  MATH  Google Scholar 

  14. Degrez G., Boccadoro C.H., Wendt J.F. (1987) The interaction of an oblique shock wave with a laminar boundary layer revisited. an experimental and numerical study. J. Fluid Mech. 177, 247–263

    Article  Google Scholar 

  15. Liou M.S., Edwards J. (1998) Low-diffusion flux-splitting methods for flows at all speeds. AIAA J. 36, 1610–1617

    Google Scholar 

  16. Alfano, D., Corre, C., de la Motte, J., Lerat, A. Assesment of numerical methods for unsteady shock/boundary layer interaction. Boundary and interior layers – computational and asymptotic methods BAIL 2004) conference, Toulouse, Juillet 2004

  17. Kim K.H., Kim C., Rho O.-H. (2001) Methods for the accurate computations of hypersonic flows i. ausmpw+ scheme. J. Comput. Phys. 174, 38–80

    Article  MATH  MathSciNet  Google Scholar 

  18. Kim K.H., Kim C., Rho O.-H. (2001) Methods for the accurate computations of hypersonic flows ii. shock-aligned grid technique. J Comput Phys 174, 81–119

    Article  MATH  MathSciNet  Google Scholar 

  19. Peyret R., Taylor T. (1983) Computational methods for fluid flows. Springer, Berlin Heidelberg New York

    Google Scholar 

  20. Jameson, A. Time-dependent calculations using multigrid with applications to unsteady flows past airfoils and wings. AIAA Paper 1991

  21. Luo H., Baum J.D., Lhner R. (2001) An accurate, fast, matrix-free implicit method for computing unsteady flows on unstructured grids. Comput. Fluids 30, 137–159

    Article  MATH  Google Scholar 

  22. Robinet, J.-Ch., Daru, V., Tenaud, Ch. Two-dimensional laminar shock wave/boundary layer interaction. In: BAIL conference, Toulouse France 2004

  23. Theofilis V., Hein S., Dallmann U. (2000) On the origin of unsteadiness and three-dimensionality in a laminar separation bubble. Phil. Trans. R. Lond. A 358, 3229–3246

    Article  MATH  Google Scholar 

  24. Dallmann, U. Three-dimensional vortex structures and vorticity topology. In: IUTAM symposium on fundamental aspects of vortex motion, Tokyo Japan 1988

  25. Dallmann, U., Herberg, H., Gebing, H., Su, W.-H. Flow field diagnostics: topological flow changes and spatio-temporal flow structures. AIAA Paper 95-0791 1995

  26. Dupont, P., Debiève, J.F., Haddad, C., Dussauge, J.P. Three-dimensional organization and unsteadiness of a shock wave/turbulent boundary layer interaction. ISSW-04, Sendai Japan 2004

  27. Dupont, P., Debiève, J.F., Ardissone, J.P., Haddad, C. Some time properties in shock boundary layer interaction. West East High Speed Fields, CIMNE, Barcelona Spain 2002

  28. Haddad, C., Ardissone, J.P., Dupont, P., Debiève, J.F. Space and time organization of a shock wave/turbulent boundary layer interaction. Congrès AAAF, Aérodynamiques instationnaires, Paris 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ch. Robinet.

Additional information

Communicated by M.Y. Hussaini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boin, J.P., Robinet, J.C., Corre, C. et al. 3D Steady and Unsteady Bifurcations in a Shock-wave/Laminar Boundary Layer Interaction: A Numerical Study. Theoret. Comput. Fluid Dynamics 20, 163–180 (2006). https://doi.org/10.1007/s00162-006-0016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-006-0016-z

Keywords

Navigation