Skip to main content
Log in

Multicloud Convective Parametrizations with Crude Vertical Structure

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Recent observational analysis reveals the central role of three multi-cloud types, congestus, stratiform, and deep convective cumulus clouds, in the dynamics of large scale convectively coupled Kelvin waves, westward propagating two-day waves, and the Madden–Julian oscillation. The authors have recently developed a systematic model convective parametrization highlighting the dynamic role of the three cloud types through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with low level heating and cooling corresponding respectively to congestus and stratiform clouds. The model includes a systematic moisture equation where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep convective precipitation and a nonlinear switch which favors either deep or congestus convection depending on whether the troposphere is moist or dry. Here several new facets of these multi-cloud models are discussed including all the relevant time scales in the models and the links with simpler parametrizations involving only a single baroclinic mode in various limiting regimes. One of the new phenomena in the multi-cloud models is the existence of suitable unstable radiative convective equilibria (RCE) involving a larger fraction of congestus clouds and a smaller fraction of deep convective clouds. Novel aspects of the linear and nonlinear stability of such unstable RCE’s are studied here. They include new modes of linear instability including mesoscale second baroclinic moist gravity waves, slow moving mesoscale modes resembling squall lines, and large scale standing modes. The nonlinear instability of unstable RCE’s to homogeneous perturbations is studied with three different types of nonlinear dynamics occurring which involve adjustment to a steady deep convective RCE, periodic oscillation, and even heteroclinic chaos in suitable parameter regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakazawa T. (1988) Tropical super clusters within intraseasonal variations over the western pacific. J. Meteorol. Soc. Jpn. 66, 823–839

    Google Scholar 

  2. Hendon H.H., Liebmann B. (1994) Organization of convection within the Madden–Julian oscillation. J. Geophys. Res. 99, 8073–8083

    Article  ADS  Google Scholar 

  3. Wheeler M., Kiladis G.N. (1999) Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. 57, 613–640

    Article  ADS  Google Scholar 

  4. Emanuel, K.A., Raymond, D.J. The representation of Cumulus convection in numerical models. In: Meteorological monographs, vol. 84, Boston: American Meterological Society, 1993

  5. Smith R.K (1997) The physics and parametrization of moist atmospheric convection. NATO ASI, Kluwer, Dordrecht

    Google Scholar 

  6. Slingo J.M. et al. (1996) Intraseasonal oscillation in 15 atmospheric general circulation models: results from an amip diagnostic subproject. Climate Dyn. 12, 325–357

    Article  ADS  Google Scholar 

  7. Moncrieff M.W., Klinker E. (1997) Organized convective systems in the tropical western pacific as a process in general circulation models: a toga-coare case study. Q. J. Roy. Meteorol. Soc. 123, 805–827

    Article  ADS  Google Scholar 

  8. Emanuel K.A. (1987) An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci. 44, 2324–2340

    Article  ADS  Google Scholar 

  9. Mapes B.E. (1993) Gregarious tropical convection. J. Atmos. Sci. 50, 2026–2037

    Article  ADS  Google Scholar 

  10. Neelin D., Yu J. (1994) Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: analytical theory. J. Atmos. Sci. 51, 1876–1894

    Article  ADS  Google Scholar 

  11. Yano J.-I., McWilliams J., Moncrieff M., Emanuel K.A. (1995) Hierarchical tropical cloud systems in an analog shallow-water model. J. Atmos. Sci. 48, 1723–1742

    Article  ADS  Google Scholar 

  12. Yano J.-I., Moncrieff M., McWilliams J. (1998) Linear stability and single-column analyses of several cumulus parametrization categories in a shallow-water model. Q. J. Roy. Meteorol. Soc. 124, 983–1005

    Article  ADS  Google Scholar 

  13. Majda A., Shefter M. (2001) Waves and instabilities for model tropical convective parametrizations. J. Atmos. Sci. 58, 896–914

    Article  MathSciNet  ADS  Google Scholar 

  14. Majda A.J., Khouider B. (2002) Stochastic and mesoscopic models for tropical convection. Proc. Natl. Acad. Sci. USA 99, 1123–1128

    Article  MATH  ADS  Google Scholar 

  15. Fuchs Z., Raymond D. (2002) Large-scale modes of a nonrotating atmosphere with water vapor and cloud-radiation feedbacks. J. Atmos. Sci. 59, 1669–1679

    Article  ADS  Google Scholar 

  16. Frierson D., Majda A., Pauluis O. (2004) Dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit. Commun. Math. Sci. 2, 591–626

    MATH  MathSciNet  Google Scholar 

  17. Charney J.G., Eliassen A. (1964) On the growth of the hurricane depression. J. Atmos. Sci. 21, 68–75

    Article  ADS  Google Scholar 

  18. Yamasaki M. (1969) Large-scale disturbances in a conditionally unstable atmosphere in low latitudes. Pap. Meteor. Geophys. 20, 289–336

    Google Scholar 

  19. Hayashi Y. (1971) Large-scale equatorial waves destabilized by convective heating in the presence of surface friction. J. Meteor. Soc. Jpn. 49, 458–466

    Google Scholar 

  20. Lindzen R.S. (1974) Wave-cisk in the tropics. J. Atmos. Sci. 31, 156–179

    Article  ADS  Google Scholar 

  21. Arakawa A., Shubert W.H. (1974) Interaction of a cumulus cloud ensemble with the large-scale environment. Part i. J. Atmos. Sci. 31, 674–701

    Article  ADS  Google Scholar 

  22. Emanuel K.A., Neelin J.D., Bretherton C.S. (1994) On large-scale circulations in convecting atmosphere. Q. J. Roy. Meteor. Soc. 120, 1111–1143

    Article  ADS  Google Scholar 

  23. Lin X., Johnson R.H. (1996) Kinematic and thermodynamic characteristics of the flow over the western pacific warm pool during toga coare. J. Atmos. Sci. 53, 695–715

    Article  ADS  Google Scholar 

  24. Johnson R.H., Rickenbach T.M., Rutledge S.A., Ciesielski P.E., Schubert W.H. (1999) Trimodal characteristics of tropical convection. J. Climate 12, 2397–2407

    Article  ADS  Google Scholar 

  25. Straub K.H., Kiladis G.N. (2002) Observations of a convectively-coupled kelvin wave in the eastern pacific itcz. J. Atmos. Sci. 59, 30–53

    Article  ADS  Google Scholar 

  26. Haertl P.T., Kiladis G.N. (2004) On the dynamics of two day equatorial disturbances. J. Atmos. Sci. 61, 2707–2721

    Article  ADS  Google Scholar 

  27. Kiladis G.N., Straub K.H., Haertl P. (2005) Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci. 62, 2790–2809

    Article  ADS  Google Scholar 

  28. Dunkerton T.J., Crum F.X. (1995) Eastward propagating 2- to 15-day equatorial convection and its relation to the tropical intraseasonal oscillation. J. Geophys. Res. 100, 25781–25790

    Article  ADS  Google Scholar 

  29. Majda A., Biello J. (2004) A multi-scale model for the intraseasonal oscillation. Proc. Natl. Acad. Sci. 101, 4736–4741

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Biello J., Majda A. (2005) A multi-scale model for the madden–julian oscillation. J. Atmos. Sci. 62, 1694–1721

    Article  MathSciNet  ADS  Google Scholar 

  31. Zehnder J. (2001) A comparison of convergence- and surface-flux-based convective parametrizations with applications to tropical cyclogenesis. J. Atmos. Sci. 58, 283–301

    Article  ADS  Google Scholar 

  32. Craig G.C., Gray S.L. (1996) CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci. 53, 3528–3540

    Article  ADS  Google Scholar 

  33. Mapes B.E. (2000) Convective inhibition, subgridscale triggering energy, and “stratiform instability” in a toy tropical wave model. J. Atmos. Sci. 57, 1515–1535

    Article  ADS  Google Scholar 

  34. Majda A., Shefter M. (2001) Models for stratiform instability and convectively coupled waves. J. Atmos. Sci. 58, 1567–1584

    Article  MathSciNet  ADS  Google Scholar 

  35. Majda A., Khouider B., Kiladis G.N., Straub K.H., Shefter M. (2004) A model for convectively coupled tropical waves: nonlinearity, rotation, and comparison with observations. J. Atmos. Sci. 61, 2188–2205

    Article  MathSciNet  ADS  Google Scholar 

  36. Yano J.-I., Emanuel K. (1991) An improved model of the equatorial troposphere and its coupling to the stratosphere. J. Atmos. Sci. 18, 377–389

    Article  ADS  Google Scholar 

  37. Khouider B., Majda A.J. (2006). A simple multicloud parametrization for convectively coupled tropical waves. Part i: linear analysis. J. Atmos. Sci. 63, 1308–1323

    MathSciNet  ADS  Google Scholar 

  38. Khouider, B., Majda, A.J. A simple multicloud parametrization for convectively coupled tropical waves. Part ii: nonlinear simulations. J. Atmos. Sci. (2006, in press)

  39. Khouider, B., Majda, A.J. Model multicloud parametrizations for convectively coupled waves: detailed nonlinear wave evolution. Dynam. Atmos. Oceans (2006, in press)

  40. Neelin D., Zeng N. (2000) A quasi-equilibrium tropical circulation model–formulation. J. Atmos. Sci. 57, 1741–1766

    Article  ADS  Google Scholar 

  41. Majda A., Biello J. (2003) The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci. 60, 1809–1821

    Article  MathSciNet  ADS  Google Scholar 

  42. Khouider B., Majda A.J. (2005) A non-oscillatory well balanced scheme for an idealized tropical climate model. Part I: Algorithm and validation. Theor. Comput. Fluid Dyn. 19, 331–354

    Article  Google Scholar 

  43. Khouider B., Majda A.J. (2005) A non-oscillatory well balanced scheme for an idealized tropical climate model. Part II: Nonlinear coupling and moisture effects. Theor. Comput. Fluid Dyn. 19, 355–375

    Article  Google Scholar 

  44. Gill A. (1982) Atmosphere-ocean dynamics. International geophysics series, vol. 30. Academic, New York

    Google Scholar 

  45. Betts A.K., Miller M.J. (1986) A new convective adjustemnt scheme. Part ii: single column tests using gate wave, bomex, and arctic air-mass data sets. Q. J. Roy. Meteorol. Soc. 112, 693–709

    Article  ADS  Google Scholar 

  46. Emanuel K. (1994) Atmospheric convection. Oxford University Press, Oxford

    Google Scholar 

  47. Betts A.K. (1986) A new convective adjustemnt scheme. part i: Observational and theoretical basis. Q. J. Roy. Meteorol. Soc. 112, 677–692

    Article  ADS  Google Scholar 

  48. Bretherton C.S., Peters M.E., Back L.E. (2004) Relationship between water vapor path and precipitation over the tropical oceans. J. Climate 17, 1517–1528

    Article  ADS  Google Scholar 

  49. Armbuster D.J., Guckenheimer J., Holmes P. (1988) Heteroclinic cycles and modulated traveling waves in systems with \(\mathcal{O}(2)\) symmetry. Phys. D 29, 257–282

    Article  MathSciNet  ADS  Google Scholar 

  50. Holmes P., Lumley J.L., Berkooz G. (1996) Turbulence, coherent structures, dynamical systems, and symmetry. Cambridge University Press, New York

    MATH  Google Scholar 

  51. Pruppacher H.R, Klett J.D. (2000) Microphysics of clouds and precipitation, chap 12. Kluwer, Dordrecht

    Google Scholar 

  52. Lin J., Neelin J.D., Zeng N. (2000) Maintenance of tropical intraseasonal variability: Impact of evaporation-wind feedback and midlatitude storms. J. Atmos. Sci. 57, 2793–2823

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boualem Khouider.

Additional information

Communicated by R. Klein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khouider, B., Majda, A.J. Multicloud Convective Parametrizations with Crude Vertical Structure. Theor. Comput. Fluid Dyn. 20, 351–375 (2006). https://doi.org/10.1007/s00162-006-0013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-006-0013-2

Keywords

Pacs

Navigation