Skip to main content

Advertisement

Log in

Effects of Large Scales Motion in Unstable Stratified Shear Flows

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Homogeneous turbulence under unstable uniform stratification (N 2 < 0) and vertical shear \((S = \hbox{d}\overline{U}_{1}/\hbox{d}x_3)\) is investigated by using the linear theory (or the so-called rapid distortion theory, RDT) for an initial isotropic turbulence over a range −∞ ≤ R i =N 2/S 2 ≤ 0. The initial potential energy is zero and P r =1 (i.e. the molecular Prandtl number).

One-dimensional (streamwise) k 1−spectra, especially Θ33(k 1) (i.e., that of the vertical kinetic energy, \(\overline{v_{3}v_{3}}/2)\) are investigated. In agreement with previous experiments, it is found that the unstable stratification affects the turbulence quantities at all scales. A significant increase of the vertical kinetic energy is observed at low wavenumbers k 1 (i.e. large scales) due to an increase of the stratification \(\left(\sqrt{-N^{2}}\right)\). The effect of the shear (S) is appreciable only at high wavenumbers k 1 (i.e. small scales).

Based on the importance of the spectral components with k 1 = 0, the asymptotic forms of Θ ij (k 1 = 0) or equivalently the so-called “two-dimensional” energy components (2DEC) are analyzed in detail. The asymptotic form for the ratio of 2DEC is compared to the long-time limit of the ratio of real energies. In the unstable stratified shearless case (S=0,N 2 ≠ 0) the variances and the covariances of the velocity and the density are derived analytically in terms of the Weber functions, while when S ≠ 0 and N 2 ≠ 0 they are obtained numerically (−100 ≤ R i <0 and \(t^{+} = \sqrt{S^{2}-N^{2}} t = 100)\). The results are discussed in connection to previous experimental results in unstable stratified open channel flows cooled from above by Komori et al. Phy Fluids 25, 1539–1546 (1982).

It is shown that the Richardson number dependence of the long-time limit of the ratios of real energies is well described by this “simple” model (i.e. the dependence of the long-time limit of 2DEC on R i ). For example, the ratio of the potential energy to the kinetic energy (q 2/2), approaches −R i /(1−R i ), the ratio of turbulent energy production by buoyancy forces to production by shearing forces (i.e. the flux Richardson number, R if ), approaches R i . Also, the Richardson number dependence of the principal angle (β) of the Reynolds stress tensor and the angle (βρ) of the scalar flux vector is fairly predicted by this model \(\beta ,\beta_{\rho} \rightarrow 1/2\tan^{-1}\left[2\sqrt{-R_{i}}/(1+R_i)\right]\).

On the other hand, it is found that the above ratios are insensitive to viscosity, while the ratios ɛ /q 2 and \(\varepsilon_{\rho}\left/(2PE)\right.\), depend on the viscosity and they evolve asymptotically like t −1. The turbulent Froude number, F rt =(L Oz /L E )2/3, where L Oz and L E are the Ozmidov length scale and the Ellison length scale, respectively, evolves asymptotically like t −1/3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor G.K., Proudman I. (1954). The effect of rapid distortion of a fluid in turbulent motion. Quart. J. Mech. Appl. Math. 7: 83–103

    MATH  MathSciNet  Google Scholar 

  2. Bradshaw P. (1969). The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36: 177–191

    Article  MATH  ADS  Google Scholar 

  3. Brethouwer G. (2004). Rotating homogeneous shear flow with passive scalars Advances in turbulence X. In: Andersson H.I., Krogstad P.-A. (eds) Proceeding of the tenth european conference. CiMNE, Barcelona, pp 1–1

    Google Scholar 

  4. Briggs D.A., Ferziger J.H., Koseff J.R., Monismith S.G. (1998). Turbulent mixing in a free-shear stably stratified two-layer fluids. J. Fluid Mech. 354:175–208

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Cambon, C.: Contribution to single and double point modelling of homogeneous turbulence. Annual research briefs, Center for Turbulence Research, Stanford University 1990

  6. Cambon C., Scott J.F. (1999). Linear and nonlinear models of anisotropic turbulence. Ann. Rev. Fluid Mech. 31:1–53

    Article  MathSciNet  ADS  Google Scholar 

  7. Cambon C., Teissèdre C., Jeandel D. (1985). Etude d’effets couplés de déformation et de rotation sur une turbulence homogène. J. Me. Theor. Appli. 4:629–657

    MATH  Google Scholar 

  8. Craik A.D.D., Criminale W.O. (1986). Evolution of wavelike disturbances in shear flows: a class of exact solutions of the Navier Stokes equations. Proc. R. Soc. Lond. Ser. A 406:13–26

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Craya, A.: Contribution à l’analyse de la turbulence associée à des vitesses moyennes. P.S.T. Ministère de l’Air, 345 1958

  10. Eliassen, A., Hoiland, E., Riis, E.: Two-dimensional perturbation of a flow with constant shear of stratified flow. Institute for Weather and Climate Research, Norwegian Academy of Sciences and Letters, Publication no 1 1953

  11. Erdelyi A., Magnus W., Oberhettinger F., Tricomi F.G. (1953). Higher transcendental functions, vols 1–3. McGraw-Hill, New York

    Google Scholar 

  12. Godfered F.S., Cambon C., Leblanc S. (2001). Zonal approach to centrifugal, elliptic and hyperbolic instabilities in Stuart vortices with external rotation. J. Fluid Mech. 449:1–37

    MathSciNet  ADS  Google Scholar 

  13. Goldstein M.E., Durbin P.A. (1980). The effect of finite turbulence spatial scale on the amplification of turbulence by a contracting stream. J Fluid Mech. 98:473–508

    Article  MATH  ADS  Google Scholar 

  14. Gradshteyn I.S., Ryzhik I.M. (1965). Table of integrals, series, and products. Academic, Dublin

    Google Scholar 

  15. Hanazaki H. (2002). Linear processes in stably and unstably stratified rotating turbulence. J. Fluid Mech. 465:157–190

    Article  MATH  ADS  Google Scholar 

  16. Hanazaki H., Hunt J.C.R. (1996). Linear processes in unsteady stably stratified turbulence. J. Fluid Mech. 318:303–337

    Article  MATH  ADS  Google Scholar 

  17. Hanazaki H., Hunt J.C.R. (2001). Linear processes in unsteady stably stratified sheared turbulence IUTAM. In: Kambe T., Nakano T., Miyauchi T. (eds) Symposium on geometry and statistics of turbulence. Kluwer, Hayama, pp. 291–296

    Google Scholar 

  18. Hanazaki H., Hunt J.C.R. (2004). Structure of unsteady stably stratified turbulence with mean shear. J. Fluid Mech. 507: 1–42

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Herring R.G. (1974). Approach of axisymmetric turbulence to isotropy. Phys. Fluids 17:859–872

    Article  MATH  ADS  Google Scholar 

  20. Hinch E.J. (1991). Perturbation methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  21. Hinze J.O. (1975). Turbulence, 2nd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  22. Holt S.E., Koseff J.R., Ferziger J.H. (1992). A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech. 237:499–539

    Article  MATH  ADS  Google Scholar 

  23. Holt S.E., Koseff J.R., Ferziger J.H. (1992). A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech. 237:499–539

    Article  MATH  ADS  Google Scholar 

  24. Hunt J.C.R., Carruthers D.J. (1990). Rapid distortion theory and the ‘problem’ of turbulence. J. Fluid Mech. 212:497–532

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Hunt J.C.R., Stretch D.D., Britter R.E. (1988). Length scales in stably stratified turbulent flows and their use in turbulence models. In: Puttock J.S. (eds) Stably Stratified flow and dense gas dispersion. Clarendon Press, Oxford, pp. 285–321

    Google Scholar 

  26. Iida O., Nagano Y. (1999). Coherent structure and heat transfer in geostrophic flow under density stratification. Phys. Fluids 11:368–377

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Ivey G.N., Imberger J. (1991). On the nature of turbulence in a stratified fluid. Part I: the energetics of mixing. J. Phys. Oceanogr. 21:150–658

    Google Scholar 

  28. Jacquin L., Leuchter O., Cambon C., Mathieu J. (1990). Homogeneous turbulence in the presence of rotation. J. Fluid Mech. 220:1–52

    Article  MATH  ADS  Google Scholar 

  29. Kaltenbach H.J., Gerz T., Schumann U. (1994). Large eddy simulations of homogeneous turbulence and diffusion in stably stratified shear flow. J. Fluid Mech. 280:1–42

    Article  MATH  ADS  Google Scholar 

  30. Komori S., Ueda H., Ogino F., Mizushina T. (1982). Turbulence structure inunstably-stratified open-channel flow. Phys. Fluids 25:1539–1546

    Article  ADS  Google Scholar 

  31. Lee J.M., Kim J., Moin P. (1990). Structure of turbulence at high shear rate. J. Fluid Mech. 216:561–583

    Article  ADS  Google Scholar 

  32. Miles J.W. (1961). On the stability of heterogeneous shear flows. J. Fluid Mech. 10:496–508

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Moffatt, H.K.: The interaction of turbulence with strong wind shear. In: Yaglom, A.M., Tatarsky, V.I. (eds.) Proceedings of the URSI-IUGG International colloquium on atmospheric turbulence and radio wave propagation. Moscow, June 15–22, 1965, Nauka, Moscow, pp. 139–154, (1967)

  34. Nagata K., Komori S. (2000). The effect of unstable stratification and mean shear on the chemical reaction in grid turbulence.J. Fluid Mech. 408:39–52

    Article  MATH  ADS  Google Scholar 

  35. Rehmann C.R., Hwang J.H. (2005). Small-scale structure of strongly stratified turbulence. J. Phys. Oceanogr. 35:151–164

    Article  ADS  Google Scholar 

  36. Riley, J.J., Metcalfe, R.W., Weissman, M.A.: Direct numerical simulations of homogeneous turbulence in density stratified fluids. In: Nonlinear properties of internal waves. In: AIP Conference Proceedings vol. 76, pp. 79–112. American Institute of Physics (1981)

  37. Rogers M.M. (1991). The structure of a passive scalar field with a uniform mean gradient in rapidly sheared homogeneous turbulent flow. Phys. Fluids A 3:144–154

    ADS  Google Scholar 

  38. Rogers M.M., Mansour N.N., Reynolds W.C. (1989). An algebraic model for the turbulent flux of a passive scalar. J. Fluid Mech. 203:77–101

    Article  ADS  Google Scholar 

  39. Saffman P.G. (1967). The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27:581–593

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Salhi A. (2002). Similarities between rotation and stratification effects on homogeneous shear flow. Theor. Comput. Fluid Dyn. 15:339–352

    Article  MATH  ADS  Google Scholar 

  41. Salhi A., Cambon C. (1997). An analysis of rotating shear flow using linear theory and DNS and LES results. J. Fluid Mech. 347:171–195

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Shih L.H., Koseff J.R., Ferziger J.H., Rehmann C.R. (2000). Scaling parameterization of stratified homogeneous turbulent shear flow. J. Fluid Mech. 412:1–20

    Article  MATH  ADS  Google Scholar 

  43. Townsend A.A. (1970). Entrainment and the structure of turbulent flow. J .Fluid Mech. 41:13–46

    Article  MATH  ADS  Google Scholar 

  44. Townsend A.A. (1976). The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  45. Tsujimura, S., Iida, O. Nagano, Y.: Effects of rotation on unstably stratified turbulence. Proc. Int. Conf. on Turbulent Heat Transfer 2, Manchester, UK, vol. 1, pp. 5.58–5.71 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salhi.

Additional information

Communicated by M.Y. Hussaini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salhi, A., Bach, A.E. Effects of Large Scales Motion in Unstable Stratified Shear Flows. Theor. Comput. Fluid Dyn. 20, 197–228 (2006). https://doi.org/10.1007/s00162-006-0012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-006-0012-3

Keywords

PACS

Navigation